Answer:
A. There is a temperature difference
Explation:
Whenever there is a temperature difference, heat transfer occurs. Heat transfer may occur rapidly, such as through a cooking pan, or slowly, such as through the walls of a picnic ice chest.
Answer:
and 
Explanation:
Our goal for this question is the calculation of the number of moles of the molecules produced by the reaction of hydrazine (
) and <u>oxygen</u> (
). So, we can start with the <u>reaction</u> between these compounds:
Now we can <u>balance the reaction</u>:
In the problem, we have the values for both reagents. Therefore we have to <u>calculate the limiting reagent</u>. Our first step, is to calculate the moles of each compound using the <u>molar masses values</u> (32.04 g/mol for
and 31.99 g/mol for
):


In the balanced reaction we have 1 mol for each reagent (the numbers in front of
and
are 1). Therefore the <u>smallest value would be the limiting reagent</u>, in this case, the limiting reagent is
.
With this in mind, we can calculate the number of moles for each product. In the case of
we have a <u>1:1 molar ratio</u> (1 mol of
is produced by 1 mol of
), so:

We can follow the same logic for the other compound. In the case of
we have a <u>1:2 molar ratio</u> (2 mol of
is produced by 1 mol of
), so:

I hope it helps!
Answer:
If NaOH of a known concentration neutralizes HCl of an unknown concentration, then you can use the volumes to determine the concentration of the HCl, because, at the equilibrium point, the number of moles of HCl equals the number of moles of NaOH.
Explanation:
I just finished the assignment.
If the mass of both the reactants is 10kg then the mass of the products also equals 10kg.
It is due to the law of conservation of mass.
Mass can neither be created nor be destroyed.
Answer:
ΔE = 5.02 x 10⁻¹⁹ j
Explanation:
ΔE (photon) = h·f = (6.63 x 10⁻³⁴ j·s)(7.57 x 10¹⁴ s⁻¹) = 5.02 x 10⁻¹⁹ j
h = Planck's Constant = 6.63 x 10⁻³⁴ j·s
f = frequency (given) = 7.57 x 10¹⁴ s⁻¹