Answer:
3Mg + Mn2O3 → 3MgO + 2Mn
Explanation:
I think this is how to balance I really don't understand the rest, I have not done this in years sorry!
Their locations can vary depending on the molecule they are associated with but they are usually in a "cloud " that is on the outside of an atom/molecule and if the atom is unstable the electrons tend to be located farther away from the atom.
Energy can be conserved by efficient energy use.
Answer: Option A
<u>Explanation:</u>
Energy can be transferred from one form to another, but it cannot be destroyed or created. So it can be conserved if efficiently used. Thus efficient usage of energy lead to conservation of energy. Due to conservation of energy, the forces can be renewable and non-renewable.
So, we should know how the input energy can be completely converted to another form of energy leading to efficient usage of energy without any loss. As if there is no loss, input energy will be equal to output energy leading to 100% efficiency.
Answer:
- <u>You need to convert the number of atoms of Ca into mass in grams, using Avogadro's number and the atomic mass of Ca.</u>
Explanation:
The amount of matter is measured in grams. Thus, you need to convert the number of atoms of Ca (calcium) into mass to compare with 2.45 grams of Mg.
To convert the atoms of calcium into mass, you divide by Avogadro's number, to obtain the number of moles of atoms, and then divide by the atomic mass of calcium.
<u />
<u>1. Number of moles, n</u>

<u />
<u>2. Mass</u>
- mass = number of moles × atomic mass
- mass = 0.053969mol × 40.078g/mol = 2.16g
Then, 2.45 g of Mg represent a greaer mass than the 3.25 × 10²² atoms of Ca.