Answer:
a)T total = 2*Voy/(g*sin( α ))
b)α = 0º , T total≅∞ (the particle, goes away horizontally indefinitely)
α = 90º, T total=2*Voy/g
Explanation:
Voy=Vo*sinα
- Time to reach the maximal height :
Kinematics equation: Vfy=Voy-at
a=g*sinα ; g is gravity
if Vfy=0 ⇒ t=T ; time to reach the maximal height
so:
0=Voy-g*sin( α )*T
T=Voy/(g*sin( α ))
- Time required to return to the starting point:
After the object reaches its maximum height, the object descends to the starting point, the time it descends is the same as the time it rises.
So T total= 2T = 2*Voy/(g*sin( α ))
The particle goes totally horizontal, goes away indefinitely
T total= 2*Voy/(g*sin( α )) ≅∞
T total=2*Voy/g
Explanation:
The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts through. The fault labeled "E" cuts through all three sedimentary rock layers (A, B,and C) and also cuts through the intrusion (D). So the fault must be the youngest formation that is seen and known of.
Answer:
Double the current
Explanation:
The energy delivered by the heater is related to the current by the following relation:
E= 
let R * t = k ( ∴ R and t both are constant)
so E= k 
Now let:
E2= k I₂^2
E2= 4E
⇒ k I₂^2= 4* k 
Cancel same terms on both sides.
I₂^2= 4* 
taking square-root on both sides.
√I₂^2 = √4* I^2
⇒I₂= 2I
If we double the current the energy delivered each minute be 4E.
An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.