An object is in motion if its distance from another object is changing. An object is in motion if it changes position relative to a reference point. An reference point is a place or object used for comparison to determine if something is moving.
Answer:
the force of gravity between them is quadrupled .
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces.
Answer:
ni = 2.04e19
Explanation:
we know that in semiconductor like intrinsic, when electron leave the band, it leave a hole in valence band so we have
n = p = ni
from intrinsic carrier concentration



1.7 = ni * 1.6*10^{-19} * (.35 + .17)
ni = 2.014 *10^{19} m^{-3}
ni = 2.04e19
Answer: The Earth's layer, which has the covering and layer, is made of a progression of things, or structural plates, that creep after some time. Along these lines, at intersecting limits, mainland outside is made and maritime covering is devastated. 2 plates slippy past each other structures a redesign plate limit.
Complete question:
if two point charges are separated by 1.5 cm and have charge values of +2.0 and -4.0 μC, respectively, what is the value of the mutual force between them.
Answer:
The mutual force between the two point charges is 319.64 N
Explanation:
Given;
distance between the two point charges, r = 1.5 cm = 1.5 x 10⁻² m
value of the charges, q₁ and q₂ = 2 μC and - μ4 C
Apply Coulomb's law;

where;
F is the force of attraction between the two charges
|q₁| and |q₂| are the magnitude of the two charges
r is the distance between the two charges
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²

Therefore, the mutual force between the two point charges is 319.64 N