1) Balanced chemical equation:
2SO2 (g) + O2 (g) -> 2SO3 (l)
2) Molar ratios
2 mol SO2 : 1 mol O2 : 2 mol SO3
3) Convert 6.00 g O2 to moles
number of moles = mass in grams / molar mass
number of moles = 6.00 g / 32 g/mol = 0.1875 mol O2.
4) Use proportions with the molar ratios
=> 2 moles SO2 / 1 mol O2 = x / 0.1875 mol O2
=> x = 0.1875 mol O2 * 2 mol SO2 / 1 mol O2 = 0.375 mol SO2.
5) Convert 0.375 mol SO2 to grams
mass in grams = number of moles * molar mass
molar mass SO2 = 32 g/mol + 2*16 g/mol = 64 g/mol
=> mass SO2 = 0.375 mol * 64 g / mol = 24.0 g
Answer: 24.0 g of SO2 are needed to react completely with 6.00 g O2.
Answer: The molecular formula will be 
Explanation:
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
Empirical weight of
is
Molecular mass of compound is = 132 g
Now we have to calculate the molecular formula.
The molecular formula will be=
Titanium has an atomic number of 22, which means it has 22 protons and 22 electrons. About 73.8 percent of natural titanium exists as the isotope Ti-48, which contains 26 neutrons.
Answer:
The answer is 0.844/10 minutes
Explanation:
You have an enzyme that catalizes a reaction which gives a product that can be quantified by an absorbance measurement. The more reaction time, the more product quantity and higher absorbance.
The rate of the reaction is the change in products quantity per time unit. As you are using the absorbance as a measure of the product quantity, you can calculate the rate as the change in absorbance (ΔA) per time (in minutes) as follows:
rate= ΔA/time
rate= (final absorbance - initial absorbance) /minutes
rate= (0.444-0.022)/5 min
rate= 0.422/5 min
In 10 minutes will be :
rate= 0.844/10 min
Commonly, a rate is the relation between two quantities measured in different units. For example, the speed of a car is the change in meters (traveled distance) per time (m/s or km/h). For an enzyme, is the same (quantity of product/time).
Answer:
The normal amount of disaccharide would be produced, but fewer monosaccharides would be produced.
Explanation:
The first reaction, the conversion of starch into disaccharides, is catalyzed by the enzyme amylase. <u>Since amylase is present in a normal amount, a normal amount of disaccharides will be produced.</u>
In the second reaction, these disaccharides will be transformed into monosaccharides by a disaccharidase. However, since t<u>here is less disaccharidase, there will be fewer monosaccharides produced than if it was a normal amount of amylase.</u>