In one mole of glucose 38 ATP energy is stored this accounts for only 40 per-cent of the total energy in glucose.
Explanation:
In standard conditions, during the cellular respiration 1 mole of Glucose in the presence of oxygen produces 36 or 38 ATPs. This accounts for only 40% of the total energy as the remaining 60 per-cent of the energy is dissipated as heat.
I mole of glucose enters the glycolysis step of aerobic cellular respiration which after oxidative phosphorylation and Electron transport chain would give 38 ATP molecules.
It can be said that only 38.3% of energy is put in ATP molecules.
I believe that sugar will desolve the fastest because of the room temperature
A stable arrangement of eight valence electrons : ³⁵Cl⁻¹
<h3>Further explanation</h3>
Chlorine is a halogen gas, located in group 17, p block
Chlorine has an atomic number of 17 and an atomic mass of 35
Electron configuration: [Ne] 3s²3p⁵
If we look at the electron configuration, then Cl will bind 1 more electron so that the configuration is stable like Argon (atomic number 18)
So by binding this one electron, chlorine forms negative ions (anions)
³⁵Cl⁻¹
B. Cl⁻² binds 2 electrons, exceeding the octet rule
C. Cl⁺¹, releases 1 electron, remains unstable
D. Cl, the neutral form of Cl, is still unstable with a 7-electron valence configuration
The quantity of heat required to vapourize 1 mole of a substance depends on the kind of intermolecular forces between the molecules of the substance. Diethyl ether molecules are held together by weak dispersion forces compared to the stronger hydrogen bonding in ethanol. Therefore, 1 mole of diethyl ether requires less heat to vapourize than is required to vapourize 1 mole of ethanol.
Intermolecular forces hold the molecules a substance together in a given state of matter. The properties of a substance such as boiling point, melting point etc are dependent on the nature of intermolecular forces holding the molecules of the substance.
Diethyl ether molecules are held together by weak dispersion forces while molecules of ethanol are held together by hydrogen bonds.
Since hydrogen bonds are much stronger than dispersion forces, a greater quantity of heat is required to break the intermolecular hydrogen bonds in ethanol in order to vapourize them than is required to vapourize diethyl ether.
Therefore, owing to stronger intermolecular forces between molecules of ethanol, less heat is required to vapourize than is required to vapourize 1 mole of ethanol.
Learn more: brainly.com/question/9328418
Answer:
Gases mix easily because of their high kinetic energy and low inter-molecular forces.
Explanation: