1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
3 years ago
13

How many liters of milk are in 334 gal enter your answer In scientific notation

Chemistry
1 answer:
baherus [9]3 years ago
3 0
To answer this question, you need to convert the gallon unit into liter. For every gallon of milk, there would be 3.78541 liters of milk. Then, the calculation would be: 334 gallon x 3.78541liter/gallon= 1264.32 liters.

If you make it into scientific notation then it would be 1.26 x 10^3
You might be interested in
Help this is due today!!!
Nookie1986 [14]

Answer:

a) Fe

b) Fe

c) Fe

Explanation:

When using their stoichiometric ratios, in all of the the iron will run out before the oxygen, making the iron the limiting reactant.

7 0
2 years ago
PLEASE HELP
charle [14.2K]

Answer: The statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.

Explanation:

Kinetic energy is the energy obtained due to the motion of an object or substance.

K.E = \frac{3}{2}kT

where,

T = temperature

This means that kinetic energy is directly proportional to temperature.

So, when heat is provided to container A then its molecules will start to move rapidly from one place to another which will cause more collisions between the atoms.

Hence, average kinetic energy will be more in container A.

Whereas container B is placed at room temperature which is low than that in container A. So, molecules in container B will move at almost same speed and therefore, specific collisions will be there. So, average kinetic energy in container B will be less than that in container A.

Thus, we can conclude that the statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.

8 0
3 years ago
*<br> What is the volume, in liters, of 12.0 kg of H2 at STP?
neonofarm [45]

Answer:

According to Avogadro's law, the volume of one mole of any gas at Standard Temperature and Pressure (STP = 273 K and 1 atm) is 22.4 L. Two important Gas Laws are required in order to convert the experimentally determined volume of hydrogen gas to that at STP. 1.

Explanation:

internet keep searching

6 0
3 years ago
The nucleus of an atom consists of
Ksenya-84 [330]

Answer:

The nucleus of an atom consists of Protons and Neutrons.-A.

5 0
3 years ago
Read 2 more answers
Calculate the pH for each of the following cases in the titration of 50.0 mL of 0.210 M HClO(aq) with 0.210 M KOH(aq).
Degger [83]
a) before addition of any KOH : 

when we use the Ka equation & Ka = 4 x 10^-8 : 

Ka = [H+]^2 / [ HCIO]

by substitution:

4 x 10^-8 = [H+]^2 / 0.21

[H+]^2 = (4 x 10^-8) * 0.21

           = 8.4 x 10^-9

[H+] = √(8.4 x 10^-9)

       = 9.2 x 10^-5 M

when PH = -㏒[H+]

   PH = -㏒(9.2 x 10^-5)

        = 4  

b)After addition of 25 mL of KOH: this produces a buffer solution 

So, we will use Henderson-Hasselbalch equation to get PH:

PH = Pka +㏒[Salt]/[acid]


first, we have to get moles of HCIO= molarity * volume

                                                           =0.21M * 0.05L

                                                           = 0.0105 moles

then, moles of KOH = molarity * volume 

                                  = 0.21 * 0.025

                                  =0.00525 moles 

∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525

and when the total volume is = 0.05 L + 0.025 L =  0.075 L

So the molarity of HCIO = moles HCIO remaining / total volume

                                        = 0.00525 / 0.075

                                        =0.07 M

and molarity of KCIO = moles KCIO / total volume

                                    = 0.00525 / 0.075

                                    = 0.07 M

and when Ka = 4 x 10^-8 

∴Pka =-㏒Ka

         = -㏒(4 x 10^-8)

         = 7.4 

by substitution in H-H equation:

PH = 7.4 + ㏒(0.07/0.07)

∴PH = 7.4 

c) after addition of 35 mL of KOH:

we will use the H-H equation again as we have a buffer solution:

PH = Pka + ㏒[salt/acid]

first, we have to get moles HCIO = molarity * volume 

                                                        = 0.21 M * 0.05L

                                                        = 0.0105 moles

then moles KOH = molarity * volume
                            =  0.22 M* 0.035 L 

                            =0.0077 moles 

∴ moles of HCIO remaining = 0.0105 - 0.0077=  8 x 10^-5

when the total volume = 0.05L + 0.035L = 0.085 L

∴ the molarity of HCIO = moles HCIO remaining / total volume 

                                      = 8 x 10^-5 / 0.085

                                      = 9.4 x 10^-4 M

and the molarity of KCIO = moles KCIO / total volume

                                          = 0.0077M / 0.085L

                                          = 0.09 M

by substitution:

PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)

∴PH = 8.38

D)After addition of 50 mL:

from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.

the molarity of KCIO = moles KCIO / total volume

                                   = 0.0105mol / 0.1 L

                                   = 0.105 M

when Ka = KW / Kb

∴Kb = 1 x 10^-14 / 4 x 10^-8

       = 2.5 x 10^-7

by using Kb expression:

Kb = [CIO-] [OH-] / [KCIO]

when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]

Kb = [OH-]^2 / [KCIO] 

2.5 x 10^-7 = [OH-]^2 /0.105

∴[OH-] = 0.00016 M

POH = -㏒[OH-]

∴POH = -㏒0.00016

           = 3.8
∴PH = 14- POH

        =14 - 3.8

PH = 10.2

e) after addition 60 mL of KOH:

when KOH neutralized all the HCIO so, to get the molarity of KOH solution

M1*V1= M2*V2

 when M1 is the molarity of KOH solution

V1 is the total volume = 0.05 + 0.06 = 0.11 L

M2 = 0.21 M 

V2 is the excess volume added  of KOH = 0.01L

so by substitution:

M1 * 0.11L = 0.21*0.01L

∴M1 =0.02 M

∴[KOH] = [OH-] = 0.02 M

∴POH = -㏒[OH-]

           = -㏒0.02 

           = 1.7

∴PH = 14- POH

       = 14- 1.7 

      = 12.3 
8 0
3 years ago
Read 2 more answers
Other questions:
  • NEED HELP ASAP PLEASE
    9·2 answers
  • what is the boiling point of the element aluminum?
    8·1 answer
  • Which activity would be an appropriate first step when designing an experiment?
    11·2 answers
  • Covert 0.200 moles of H2SO4 to grams. Show all work
    5·1 answer
  • The drug molecules bind the protein in a 1:1 ratio to form a drug-protein complex. The protein concentration in aqueous solution
    15·1 answer
  • Anatom of an element has no electron,will that atom have any mass or not? Can antom exist
    7·1 answer
  • What do calories provude for the human body?
    14·2 answers
  • 3. What are the planets called that are mostly made of gas?
    13·2 answers
  • In order to qualify as matter, the object must
    11·2 answers
  • Come People join meet <br><br>this is the code to join meet<br>pjv-ngby-iir​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!