1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mamont248 [21]
3 years ago
12

A football player kicks a football downfield. The height of the football increases until it reaches a maximum height of 15 yards

, 30 yards away from the player. A second kick is modeled by f(x)=−0.032x(x−50), where f is the height (in yards) and x is the horizontal distance (in yards). Compare the distances that the footballs travel before hitting the ground.
Physics
2 answers:
Trava [24]3 years ago
8 0

Answer:

kick 1 has travelled 15 + 15 = 30 yards before hitting the ground

so kick 2 travels 25 + 25 = 50 yards before hitting the ground

first kick reached 8 yards and 2nd kick reached 20 yards  

Explanation:

1st kick travelled 15 yards to reach maximum height of 8 yards

so, it has travelled 15 + 15 = 30 yards before hitting the ground

2nd kick is given by the equation

y (x) = -0.032x(x - 50)

Y = 1.6 X - 0.032x^2

we know that maximum height occurs is given as

x = -\frac{b}{2a}

y =- \frac{1.6}{2(-0.032)} = 25

and maximum height is

y = 1.6\times 25 - 0.032\times 25^2

y = 20

so kick 2 travels 25 + 25 = 50 yards before hitting the ground

first kick reached 8 yards and 2nd kick reached 20 yards

ratelena [41]3 years ago
5 0

Answer:

<h2>The second ball traveled more distance, horizontally and vertically.</h2>

Explanation:

The given function is

f(x)=-0.032x(x-50)

To find the distances that the second football travels, we need to find the vertex of its movement, because it's movement has a parabola form. The quadratic expression is

f(x)=-0.032x^{2} +1.6x

Where a=-0.032 and b=1.6

The vertex has coordinates of (h,k), where

h=-\frac{b}{2a}

Replacing values, we have

h=-\frac{1.6}{2(-0.032)}=25

Then, k=f(h)

k=f(25)=-0.032(25)^{2} +1.6(25)\\k=-20+40=20

Which means the maximum height of the second football is 20 yards. That means it travels 40 yards vertically.

Now, its horizontal distance can be found when f(x)=0

0=-0.032x^{2} +1.6x\\0=x(-0.032x+1.6)\\x_{1}=0\\ -0.032x_{2} +16=0\\x_{2}=\frac{-16}{-0.032}\\ x_{2}=500

So, its horizontal distance is 500 yards.

Comparing the distances between the footballs.

<h3>Ball 1</h3>

Horizontal distance of 30 yards.

Vertical distance of 30 yards.

<h3>Ball 2</h3>

Horizontal distance of 500 yards.

Vertical distance of 40 yards.

If we find their difference, it would be

Horizontal: 500 - 30 = 470 yards.

Vertical: 40 - 30 = 10 yards.

Therefore, the second ball traveled more distance, horizontally and vertically.

You might be interested in
the intermolecular force of attraction increases when intermolecular space decreases .Is it true or false​
Lerok [7]

Answer:

true

Explanation:

Have a great day/night! ^_^

4 0
2 years ago
The angle of reflection is the angle between the normal line and the___?
Aleks [24]

Answer:

Reflected line

Explanation:

The angle between the reflected ray and the normal ray is called angle of reflection.

4 0
3 years ago
Which is faster a bowling ball or a golf ball
timofeeve [1]
Golf ball because it weighs less so it has more power to yeah
8 0
3 years ago
Read 2 more answers
) A satellite of mass m has an orbital period T when it is in a circular orbit of radius R around the earth. If the satellite in
Mrrafil [7]

Answer:

A) T.

Explanation:

Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:

T=\frac{2\pi R^{\frac{3}{2}}}{\sqrt{GM}}  

So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.

4 0
3 years ago
A rectangular loop of area A is placed in a region where the magnetic field is perpendicular to the plane of the loop. The magni
mina [271]

Answer:

Induced emf, \epsilon=-A\dfrac{B_{max}e^{-t/\tau}}{\tau}

Explanation:

The varying magnetic field with time t is given by according to equation as :

B=B_{max}e^{-t/\tau}

Where

B_{max}\ and\ t are constant

Let \epsilon is the emf induced in the loop as a function of time. We know that the rate of change of magnetic flux is equal to the induced emf as:

\epsilon=-\dfrac{d\phi}{dt}

\epsilon=-\dfrac{d(BA)}{dt}

\epsilon=-A\dfrac{d(B)}{dt}

\epsilon=-A\dfrac{d(B_{max}e^{-t/\tau})}{dt}

\epsilon=A\dfrac{B_{max}e^{-t/\tau}}{\tau}

So, the induced emf in the loop as a function of time is A\dfrac{B_{max}e^{-t/\tau}}{\tau}. Hence, this is the required solution.

7 0
3 years ago
Other questions:
  • A rock rolls down a steep hill. Its intial velocity is 1 meter per second. By the time it reaches the bottom of the hill 30 seco
    9·1 answer
  • I WIIL GIVE BRAINLIEST
    11·1 answer
  • Which waves are longitude waves? Check all that apply.
    12·1 answer
  • A satellite dish is in the shape of a parabolic surface. Signals coming from a satellite strike the surface of the dish and are
    13·1 answer
  • Balancing Chemical Equations
    5·2 answers
  • The moon is made up mostly of _______, similar to minerals on earth
    9·1 answer
  • An inductor is connected to a 120-V, 60-Hz supply. The current in the circuit is 2.4 A. What is the inductive reactance
    8·1 answer
  • No one falls out during a loop on a<br> rollercoaster because of _____.
    12·2 answers
  • The velocity of a given wave remains the same while the wavelength increases. What happens to the frequency of the wave?
    13·1 answer
  • Two balls of equal mass collide and stick together as shown in the figure. The initial velocity of ball B is twice that of ball
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!