Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
Answer:
3335400 N/m² or 483.75889 lb/in²
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
A = Area = 1.5 cm²
m = Mass of woman = 51 kg
F = Force = mg
When we divide force by area we get pressure



The pressure exerted on the floor is 3335400 N/m² or 483.75889 lb/in²
Answer:
A. Adjusts how far down the piston travels
Explanation:
This type of engine changes the possition of the piston in order to modify the compression chamber volume and therefore the compression ratio of the engine. The volume of the chamber is proportional to the run of the piston (how far down the piston travels)
This engine is used to achive the optimal compression rate in each individual stage.
Answer:
volume is 700 mL
Explanation:
pressure = 2 atm
volume = 350 mL = 0.350 L
to find out
volume
solution
we will apply here equation that is
P1×V1 = P2×V2 ..............1
here P1 = 2 and V1 = 0.350 and P2 = 1 for standard atmospheric pressure
so put all value here in equation 1 and get V2 volume
2 × 0.350 = 1 × V2
V2 = 0.700 L
V2 = 700 mL
so volume is 700 mL