The answer is B. Molecules move more quickly as temperature increases.
When Allmond molecular motion stops, that is considered absolute zero. That does not mean that it cannot get colder, disapproving A.
C is just wrong.
D says when molecular motion stops the temperature STARTS to decrease, it was decreasing before it got there.
Answer:
P=atm

Explanation:
The problem give you the Van Der Waals equation:

First we are going to solve for P:


Then you should know all the units of each term of the equation, that is:







where atm=atmosphere, L=litters, K=kelvin
Now, you should replace the units in the equation for each value:

Then you should multiply and eliminate the same units which they are dividing each other (Please see the photo below), so you have:

Then operate the fraction subtraction:
P=

And finally you can find the answer:
P=atm
Now solving for b:




Replacing units:

Multiplying and dividing units,(please see the second photo below), we have:



D) because both reactions are occurring at the same rate. They are not equal but their concentrations are constant.
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole