1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
3 years ago
14

Which of the following would decrease in size during the contraction of a sarcomere? The width of the I-bands The width of the A

-band The width of the myosin filaments The width of the actin filaments

Physics
1 answer:
ANEK [815]3 years ago
8 0

Hi!


The correct answer would be: the width of I-bands


The sacromere is the smallest contractile unit of striated muscles. These units comprise of filaments (fibrous proteins) that, upon muscle contraction or relaxation, slide past each other. The sacromere consists of thick filaments (myosin) and thin filaments (actin).


<em>Refer to the attached picture to clearly see the structure of a sacromere.</em>


<u>When a sacromere contracts, a series of changes take place which include:</u>

<em>- Shortening of I band, and consequently the H zone</em>

<em>- The A line remains unchanged</em>

<em>- Z lines come closer to each other (and this is due to the shortening of the I bands) </em>

The only changes that take place occur in the zones/areas in the sacromere (as mentioned), not in the filaments (actin and myosin) that make the up the sacromere; hence all other options are wrong.


Hope this helps!

You might be interested in
HELPP PLEEEAAAAASSSEEEEWKKKKKKK!!!!!
nalin [4]
1. make good decisions

2. explosive

3. favorable

answered these on edge. also, you marked this as physics even though its english. might wanna watch out for that lol, so youll get a quicker answer
8 0
3 years ago
Read 2 more answers
Name the net force between objects that allows a car to travel in a circle
iren [92.7K]
I think centripetal force ☺
6 0
3 years ago
During the time interval from 0.0 to 10.0 s, the position vector of a car on a road is given by x(t) = a + bt + ct2, with a = 17
Juli2301 [7.4K]

The car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.

<h3>Average velocity of the car</h3>

The average velocity of the car is calculated as follows;

x(t) = a + bt + ct2

v = dx/dt

v(t) = b + 2ct

v(0) = -10.1 m/s + 2(1.1)(0) = -10.1 m/s

v(10) = -10.1 + 2(1.1)(10) = 11.9 m/s

<h3>Average velocity</h3>

V = ¹/₂[v(0) + v(10)]

V = ¹/₂ (-10.1  + 11.9 )

V = 0.9 m/s

Thus, the car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.

Learn more about velocity here: brainly.com/question/4931057

#SPJ1

3 0
2 years ago
A capacitor with initial charge q0 is discharged through a resistor. a) In terms of the time constant τ, how long is required fo
-BARSIC- [3]

Answer:

It would take \tau(\ln 9 - \ln 8) time for the capacitor to discharge from q_0 to \displaystyle \frac{8}{9} \, q_0.

It would take \tau(\ln 9 - \ln 7) time for the capacitor to discharge from q_0 to \displaystyle \frac{7}{9}\, q_0.

Note that \ln 9 = 2\,\ln 3, and that\ln 8 = 3\, \ln 2.

Explanation:

In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is \tau, and the initial charge of the capacitor be q_0. Then at time t, the charge stored in the capacitor would be:

\displaystyle q(t) = q_0 \, e^{-t / \tau}.

<h3>a)</h3>

\displaystyle q(t) = \left(1 - \frac{1}{9}\right) \, q_0 = \frac{8}{9}\, q_0.

Apply the equation \displaystyle q(t) = q_0 \, e^{-t / \tau}:

\displaystyle \frac{8}{9}\, q_0 = q_0 \, e^{-t/\tau}.

The goal is to solve for t in terms of \tau. Rearrange the equation:

\displaystyle e^{-t/\tau} = \frac{8}{9}.

Take the natural logarithm of both sides:

\displaystyle \ln\, e^{-t/\tau} = \ln \frac{8}{9}.

\displaystyle -\frac{t}{\tau} = \ln 8 - \ln 9.

t = - \tau \, \left(\ln 8 - \ln 9\right) = \tau(\ln 9 - \ln 8).

<h3>b)</h3>

\displaystyle q(t) = \left(1 - \frac{1}{9}\right) \, q_0 = \frac{7}{9}\, q_0.

Apply the equation \displaystyle q(t) = q_0 \, e^{-t / \tau}:

\displaystyle \frac{7}{9}\, q_0 = q_0 \, e^{-t/\tau}.

The goal is to solve for t in terms of \tau. Rearrange the equation:

\displaystyle e^{-t/\tau} = \frac{7}{9}.

Take the natural logarithm of both sides:

\displaystyle \ln\, e^{-t/\tau} = \ln \frac{7}{9}.

\displaystyle -\frac{t}{\tau} = \ln 7 - \ln 9.

t = - \tau \, \left(\ln 7 - \ln 9\right) = \tau(\ln 9 - \ln 7).

7 0
3 years ago
A high-jump athlete leaves the ground, lifting her center of mass 1.8 m and crossing the bar with a horizontal velocity of 1.4 m
Romashka [77]

Answer:

The minimum speed when she leave the ground is 6.10 m/s.

Explanation:

Given that,

Horizontal velocity = 1.4 m/s

Height = 1.8 m

We need to calculate the minimum speed must she leave the ground

Using conservation of energy

K.E+P.E=P.E+K.E

\dfrac{1}{2}mv_{1}^2+0=mgh+\dfrac{1}{2}mv_{2}^2

\dfrac{v_{1}^2}{2}=gh+\dfrac{v_{2}^2}{2}

Put the value into the formula

\dfrac{v_{1}^2}{2}=9.8\times1.8+\dfrac{(1.4)^2}{2}

\dfrac{v_{1}^2}{2}=18.62

v_{1}=\sqrt{2\times18.62}

v_{1}=6.10\ m/s

Hence, The minimum speed when she leave the ground is 6.10 m/s.

6 0
3 years ago
Other questions:
  • Is the the last half of the month waxing or waning( talking about moon phases
    14·1 answer
  • An example of diffusion in your everyday life
    12·1 answer
  • Lena is studying the properties of light in a laboratory. If she increases the amplitude of the light waves she is studying, wha
    11·1 answer
  • Work out this problem if an object weighs 34.8 grams and has a volume of 22.8ml , what is this object's density?
    5·2 answers
  • Which of the following is not considered a behavior?
    11·2 answers
  • A 1200 N force acts on an object, resulting in an acceleration of 8.0 m/s2. What is the mass of the object?
    10·1 answer
  • An 800 kg car is parked next to a 1000 kg car. Their centers of mass are 3.5 m apart. Find the gravitational force between them.
    6·1 answer
  • Light travels about 180 million kilometers in 10 minutes. How far does it travel in 1 minute? How far does it travel in 1 second
    13·1 answer
  • Which layer is the igneous rock type?
    7·2 answers
  • a force of 1.35 newtons is required to accelerate a book by 1.5 meters/second2 along a frictionless surface. what is the mass of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!