Explanation:
It is given that,
Initial vapor pressure, P₁ = 77.86 mm
Initial temperature, T₁ = 318.3 K
Final vapor pressure, P₂ = 161.3 mm
Initial temperature, T₂ = 340.7 K
We need to find its heat of vaporization. It can be calculated by using Clausius-Clapeyron equation.




So, the heat of vaporization of a substance is 29.31 kJ/mol. Hence, this is the required solution.
Suppose that the cyclist begins his journey from the rest from the top of a wedge with a slope of a degree above the horizontal.
At point A (where it starts its journey), the energy is:
Ea = m * g * h
In other words, energy is only potential.
At point B (located at the bottom of the wedge), the energy is:
Eb = (1/2) * (m) * (v ^ 2)
In other words, the energy is only kinetic.
For energy conservation we have:
Ea = Eb
That is, we have that all potential energy is transformed into kinetic energy.
Which means that the cyclist has less kinetic energy at point A because that's where he has more potential energy.
answer:
the cyclist has less kinetic energy at point A because that's where he has more potential energy.
Answer:
Velocity of throwing = 34.335 m/s
Explanation:
Time taken by the tennis ball to reach maximum height, t = 0.5 x 7 = 3.5 seconds.
Let the initial velocity be u, we have acceleration due to gravity, a = -9.81 m/s² and final velocity = 0 m/s
Equation of motion result we have v = u + at
Substituting
0 = u - 9.81 x 3.5
u = 34.335 m/s
Velocity of throwing = 34.335 m/s
Answer:
0.146 m/s
Explanation:
We can see it in the pic.