1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
9

A particle moves along a straight line with a velocity V=(200s) mm/s, where s is in millimeters. Determine acceleration of the p

article at S = 2000mm.

Engineering
1 answer:
iragen [17]3 years ago
8 0

Answer:

200 mm/s²

Explanation:

See it in the pic

You might be interested in
Takt time is the rate at which a factory must produce to satisfy the customer's demand. a)- True b)- False
laila [671]

Answer: a)True

Explanation: Takt time is defined as the average time difference between  the production of the two consecutive unit of goods by the manufacturer and this rate is matched with the demand of the customer. This is the time which is calculated to find the acceptable time for which the goods unit must be produced  by the factory to meet the needs of the customer. Therefore , the statement is true that takt time is the rate at which a factory must produce to satisfy the customer's demand.

6 0
3 years ago
A furnace wall is to be built of 20-cm firebrick and building (structural) brick of same thickness. The thermal conductivities o
Norma-Jean [14]

Answer:

q=2313.04W/m^2

T=690.86°C

Explanation:

Given that

Thickness t= 20 cm

Thermal conductivity of firebrick= 1.6 W/m.K

Thermal conductivity of structural brick= 0.7 W/m.K

Inner temperature of firebrick=980°C

Outer temperature of structural brick =30°C

We know that thermal resistance

R=\dfrac{t}{KA}

These are connect in series

R=\left(\dfrac{t}{KA}\right)_{fire}+\left(\dfrac{t}{KA}\right)_{struc}

R=\dfrac{0.2}{1.6A}+\dfrac{0.2}{0.7A}\ K/W

R=\dfrac{23}{56A}\ K/W

Heat transfer

Q=\dfrac{\Delta T}{R}

Q=56A\times \dfrac{980-30}{23}\ W

So heat flux

q=2313.04W/m^2

Lets temperature between interface is T

Now by equating heat in both bricks

\dfrac{980-T}{\dfrac{0.2}{1.6A}}=\dfrac{T-30}{\dfrac{0.2}{0.7A}}

So T=690.86°C

6 0
3 years ago
At an axial load of 22 kN, a 15-mm-thick × 40-mm-wide polyimide polymer bar elongates 4.1 mm while the bar width contracts 0.15
Alenkasestr [34]

Answer:

The Poisson's Ratio of the bar is 0.247

Explanation:

The Poisson's ratio is got by using the formula

Lateral strain / longitudinal strain

Lateral strain = elongation / original width (since we are given the change in width as a result of compession)

Lateral strain = 0.15mm / 40 mm =0.00375

Please note that strain is a dimensionless quantity, hence it has no unit.

The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.

Longitudinal strain = 4.1 mm / 270 mm = 0.015185

Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247

The Poisson's Ratio of the bar is 0.247

Please note also that this quantity also does not have a dimension

3 0
3 years ago
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 lb and
k0ka [10]

Answer:

A.) 0.3088

B.) 0.0017

C.) part A

Explanation:

A.)

z1= \frac{\left(150-137\right)}{27.7}=0.4693

z2=\frac{\left(201-137\right)}{27.7}=2.3105

P(0.4693

B.)

z1=\frac{150-137}{27.7/ \sqrt{39}} =2.9309\\z2=\frac{201-137}{27.7/ \sqrt{39}}=14.4289

\\P(2.9309

C.) Since the seat performance for an individual pilot is more important than 39 different pilots.

3 0
3 years ago
Read 2 more answers
A sand has a natural water content of 5% and bulk unit weight of 18.0 kN/m3. The void ratios corresponding to the densest and lo
Zinaida [17]

Answer:

Relative density = 0.545

Degree of saturation = 24.77%

Explanation:

Data provided in the question:

Water content, w = 5%

Bulk unit weight = 18.0 kN/m³

Void ratio in the densest state, e_{min} = 0.51

Void ratio in the loosest state, e_{max} = 0.87

Now,

Dry density, \gamma_d=\frac{\gamma_t}{1+w}

=\frac{18}{1+0.05}

= 17.14 kN/m³

Also,

\gamma_d=\frac{G\gamma_w}{1+e}

here, G = Specific gravity = 2.7 for sand

17.14=\frac{2.7\times9.81}{1+e}

or

e = 0.545

Relative density = \frac{e_{max}-e}{e_{max}-e_{min}}

= \frac{0.87-0.545}{0.87-0.51}

= 0.902

Also,

Se = wG

here,

S is the degree of saturation

therefore,

S(0.545) = (0.05)()2.7

or

S = 0.2477

or

S = 0.2477 × 100% = 24.77%

7 0
3 years ago
Other questions:
  • This assignment covers the sequential circuit component: Register and ALU. In this assignment you are supposed to create your ow
    13·1 answer
  • A rubber wheel on a steel rim spins freely on a horizontal axle that is suspended by a fixed pivot at point P. When the wheel sp
    11·1 answer
  • The Manufacturing sector is the only sector where Lean manufacturing philosophy can be applied. a)- True b)- False
    12·1 answer
  • Remember from Lab 3C that Mad Libs are activities that have a person provide various words, which are then used to complete a sh
    11·1 answer
  • How to go about the designing of a multirange voltmeter​
    8·1 answer
  • Here you go!!!!!!!!!!!!!!!!!1
    8·1 answer
  • In an apartment the interior air temperature is 20°C and exterior air temperatures is 5°C. The wall has inner and outer surface
    8·1 answer
  • 53. The plan of a building is in the form of a rectangle with
    13·1 answer
  • Example 12: Write an algorithm and draw a flowchart to calculate
    12·1 answer
  • R-744 refrigerant is bad why
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!