1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
2 years ago
12

96/64 reduced to its lowest term

Engineering
1 answer:
Marina CMI [18]2 years ago
8 0

Answer:

3/2

Explanation:

You might be interested in
Anyone help me please ?
Degger [83]

Answer:

I can help but I need to know what it looking for

5 0
2 years ago
What can be the main disadvantage of pulse amplitude modulation?​
Feliz [49]

Answer:

transmission bandwidth required is very large.

Explanation:

4 0
2 years ago
The advantage of an interferometer is that
victus00 [196]

It can provide measurements of stars with a higher angular resolution than is possible with conventional telescopes.

5 0
1 year ago
Freeee Poinntssss 100!!!!!!<br> Hi how you doin?
Andreas93 [3]
Thank u very much , im doin good wby :)
6 0
2 years ago
Read 2 more answers
Air in a large tank at 300C and 400kPa, flows through a converging diverging nozzle with throat diameter 2cm. It exits smoothly
-Dominant- [34]

Answer:

The answer is "3.74 \ cm\ \ and \ \ 0.186 \frac{kg}{s}"

Explanation:

Given data:  

Initial temperature of tank T_1 = 300^{\circ}\ C= 573 K

Initial pressure of tank P_1= 400 \ kPa

Diameter of throat d* = 2 \ cm

Mach number at exit M = 2.8

In point a:

calculating the throat area:

A*=\frac{\pi}{4} \times d^2

      =\frac{\pi}{4} \times 2^2\\\\=\frac{\pi}{4} \times 4\\\\=3.14 \ cm^2

Since, the Mach number at throat is approximately half the Mach number at exit.  

Calculate the Mach number at throat.  

M*=\frac{M}{2}\\\\=\frac{2.8}{2}\\\\=1.4

Calculate the exit area using isentropic flow equation.

\frac{A}{A*}= (\frac{\gamma -1}{2})^{\frac{\gamma +1}{2(\gamma -1)}}  (\frac{1+\frac{\gamma -1}{2} M*^2}{M*})^{\frac{\gamma +1}{2(\gamma -1)}}

Here: \gamma is the specific heat ratio. Substitute the values in above equation.

\frac{A}{3.14}= (\frac{1.4-1}{2})^{-\frac{1.4+1}{2(1.4 -1)}}  (\frac{1+\frac{1.4-1}{2} (1.4)^2}{1.4})^{\frac{1.4+1}{2(1.4-1)}} \\\\A=\frac{\pi}{4}d^2 \\\\10.99=\frac{\pi}{4}d^2 \\\\d = 3.74 \ cm

exit diameter is 3.74 cm

In point b:

Calculate the temperature at throat.

\frac{T*}{T}=(1+\frac{\Gamma-1}{2} M*^2)^{-1}\\\\\frac{T*}{573}=(1+\frac{1.4-1}{2} (1.4)^2)^{-1}\\\\T*=411.41 \ K

Calculate the velocity at exit.  

V*=M*\sqrt{ \gamma R T*}

Here: R is the gas constant.  

V*=1.4 \times \sqrt{1.4 \times 287 \times 411.41}\\\\=569.21 \ \frac{m}{s}

Calculate the density of air at inlet

\rho_1 =\frac{P_1}{RT_1}\\\\=\frac{400}{ 0.287 \times 573}\\\\=2.43\  \frac{kg}{m^3}

Calculate the density of air at throat using isentropic flow equation.  

\frac{\rho}{\rho_1}=(1+\frac{\Gamma -1}{2} M*^2)^{-\frac{1}{\Gamma -1}} \\\\\frac{\rho *}{2.43}=(1+\frac{1.4-1}{2} (1.4)*^2)^{-\frac{1}{1.4-1}} \\\\\rho*= 1.045 \ \frac{kg}{m^3}

Calculate the mass flow rate.  

m= \rho* \times A* \times V*\\\\= 1.045 \times 3.14 times 10^{-4} \times 569.21\\\\= 0.186 \frac{kg}{s}

5 0
2 years ago
Other questions:
  • If a steel cable is rated to take 800-lb and the steel has a yield strength of 90,000psi, what is the diameter of the cable?
    12·1 answer
  • (a) Draw the Moore finite state machine (FSM) of an electronic combination lock with a RESET button, two number buttons (0 and 1
    12·1 answer
  • A 1020 CD steel shaft is to transmit 15 kW while rotating at 1750 rpm. Determine the minimum diameter for the shaft to provide a
    10·1 answer
  • A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is
    9·1 answer
  • An Otto cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and pres
    6·1 answer
  • A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane-strain fracture tough
    10·1 answer
  • An aircraft is in a steady level turn at a flight speed of 200 ft/s and a turn rate about the local vertical of 5 deg/s. Thrust
    8·1 answer
  • Liquid benzene and liquid n-hexane are blended to form a stream flowing at a rate of 1700 lbm/h. An on-line densitometer (an ins
    6·1 answer
  • An atom that gained an electron is called​
    10·2 answers
  • Drag each item to show if it is an element or not an element.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!