P = m*v
7.5 = m*15
m = 7.5/15 = 0.5 kg
Answer:
(a) p = 3.4 kg-m/s (b) 37.78 N.
Explanation:
Mass of a basketball, m = 0.4 kg
Initial velocity of the ball, u = -5.7 m/s (as it comes down so it is negative)
It rebounds upward at a speed of 2.8 m/s (as it rebounds so positive)
(a) Change in momentum = final momentum - initial momentum
p = m(v-u)
p = 0.4 (2.8-(-5.7))
p = 3.4 kg-m/s
(b) Impulse = change in momentum
Ft = 3.4
We have, t = 0.09 s

Hence, this is the required solution.
210 Pb ---> -ie + 210 B:
84 8.3
To solve this problem it is necessary to apply the concepts related to the described wavelength through frequency and speed. Mathematically it can be expressed as:

Where,
Wavelength
f = Frequency
v = Velocity
Our values are given as,

Speed of sound
Keep in mind that we do not use the travel speed of the ambulance because we are in front of it. In case it approached or moved away we should use the concepts related to the Doppler effect:
Replacing we have,


Therefore the frequency that you hear if you are standing in from of the ambulance is 0.1214m
Answer:
Emergency Room or a Clinic
Explanation:
The Emergency Room if in a hospital. A Clinic may also see patients without insurance, but they're not on Emergency Room grounds.