The length of a segment is the distance between its endpoints.

- AB and CD are not congruent
- AB does not bisect CD
- CD does not bisect AB
<u>(a) Length of AB</u>
We have:


The length of AB is calculated using the following distance formula

So, we have:


Simplify

<u>(b) Are AB and CD congruent</u>
First, we calculate the length of CD using:

Where:


So, we have:



By comparison

Hence, AB and CD are not congruent
<u>(c) AB bisects CD or not?</u>
If AB bisects CD, then:

The above equation is not true, because:

Hence, AB does not bisect CD
<u>(d) CD bisects AB or not?</u>
If CD bisects AB, then:

The above equation is not true, because:

Hence, CD does not bisect AB
Read more about lengths and bisections at:
brainly.com/question/20837270
Answer:
Some.
Terms that include a number and a letter are expressions.
Answer:
![\boxed{ \frac{ \sqrt[3]{ {x}^{11} } }{4} }](https://tex.z-dn.net/?f=%20%5Cboxed%7B%20%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7B%20%7Bx%7D%5E%7B11%7D%20%7D%20%7D%7B4%7D%20%7D%20)
Step-by-step explanation:
![= > \frac{ {x}^{4} }{ \sqrt[3]{64x} } \\ \\ = > \frac{ {x}^{4} }{ {(64x)}^{ \frac{1}{3} } } \\ \\ = > \frac{ {x}^{4} }{ ({64}^{ \frac{1}{3} } )\times ({x}^{ \frac{1}{3} } )} \\ \\ = > \frac{ {x}^{4} }{ ({( {4}^{3} )}^{ \frac{1}{3} }) \times( {x}^{ \frac{1}{3} } )} \\ \\ = > \frac{ {x}^{4} }{ ({4}^{ \cancel{3} \times \frac{1}{ \cancel{3}} } ) \times( {x}^{ \frac{1}{3} } )} \\ \\ = > \frac{ {x}^{4} }{4 {x}^{ \frac{1}{3} } } \\ \\ = > \frac{ {x}^{4 - \frac{1}{3} } }{4} \\ \\ = > \frac{ {x}^{ \frac{12 - 1}{3} } }{4} \\ \\ = > \frac{ {x}^{ \frac{11}{3} } }{4} \\ \\ = > \frac{ \sqrt[3]{ {x}^{11} } }{4}](https://tex.z-dn.net/?f=%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%5Csqrt%5B3%5D%7B64x%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%7B%2864x%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%28%7B64%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%29%5Ctimes%20%20%28%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%29%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%28%7B%28%20%7B4%7D%5E%7B3%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%29%20%5Ctimes%28%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%29%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B%20%28%7B4%7D%5E%7B%20%5Ccancel%7B3%7D%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B%20%5Ccancel%7B3%7D%7D%20%7D%20%29%20%5Ctimes%28%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%29%7D%20%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%7D%20%7D%7B4%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B4%20-%20%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%7B4%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B%20%5Cfrac%7B12%20-%201%7D%7B3%7D%20%7D%20%7D%7B4%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%5Cfrac%7B%20%7Bx%7D%5E%7B%20%5Cfrac%7B11%7D%7B3%7D%20%7D%20%7D%7B4%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%20%5Cfrac%7B%20%5Csqrt%5B3%5D%7B%20%7Bx%7D%5E%7B11%7D%20%7D%20%7D%7B4%7D%20)
Answer: Alice's team
Step-by-step explanation: Add twelve and six you get 18; add 15 and 18 you get 33; now 18- 12= 6 so Alice won 6 games out of 18 so that ratio is 6:12 12-6=6; while Lucy's team's ratio is 15:18, 18- 15= 3. 3 is less than 6 so Alice's team had a higher ratio of wins to loses.
The last option. The lines graphed never touch so there is no solution