Hurricanes derive their energy from the Latent heat of condensation.
Hence, Option (1) is correct answer.
<h3>What is Latent Heat ? </h3>
The heat that is released or absorbed during a phase change of a substance is known as Latent heat.
<h3>What is Hurricanes ?</h3>
Hurricanes is basically a type of storm called a tropical cyclone. These are intense low pressure areas. Hurricanes derive their energy from the latent heat of CONDENSATION.
Thus from the above conclusion we can say that Hurricanes derive their energy from the Latent heat of condensation.
Hence, Option (1) is correct answer.
Learn more about the Latent heat here: brainly.com/question/5401454
#SPJ4
Answer:
See explanation.
Explanation:
Hello,
In this case, we say that chemical reactions are governed by the law of conservation of mass, which states that matter cannot be neither created nor destroyed by transformed, for that reason, we need to balance chemical reactions in order to ensure all the atoms to be in the same quantity at both reactants and products.
Moreover, equilibrium is defined as such condition at which the concentration of both reactants and products stop changing over the time so they become constant as well as their null reaction rate.
A widely acknowledged reaction is the HABER one which consists on the synthesis of ammonia by using elemental nitrogen and hydrogen:

In such reaction, we have two nitrogens at both reatants and products and six hydrogens at at both reatants and products for us to obey the law of conservation of mass. Furthermore, as the time goes by, nitrogen reacts with hydrogen, nonetheless, they do not react indefinitely, they have a limit that is equilibrium, so their moles stop being consumed and remain unchanged as well as the produced moles of ammonia.
Best regards.
This would be 1.22 x 10^1
You simply move the decimal.
If this helped you, please list me as brainliest!
A million years old
Duhhhh
Answer:
<h2>All Group 1 metals form halides that are white solids at room temperature. The melting point is correlated to the strength of intermolecular</h2>