1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Law Incorporation [45]
2 years ago
14

Consider a satellite in a circular orbit around the Earth. If it were at an altitude equal to twice the radius of the Earth, 2RE

, how would its speed v relate to the Earth's radius RE, and the magnitude g of the acceleration due to gravity on the Earth's surface?
Physics
2 answers:
Elenna [48]2 years ago
3 0

Answer:

v=\sqrt{\frac{gR_E}{2}}

Explanation:

Satellites experiment a force given by Newton's Gravitation Law:

F=\frac{GMm}{r^2}

where M is Earth's mass, m the satellite's mass, r the distance between their gravitational centers and G the gravitational constant.

We also know from Newton's 2nd Law that <em>F=ma, </em>so putting both together we will have:

ma=\frac{GMm}{r^2}

a=\frac{GM}{r^2}

If we are on the surface of the Earth, the acceleration would be g and r=R_E (Earth's radius):

g=\frac{GM}{R_E^2}

Which we will write as:

gR_E^2=GM

If we are on orbit the acceleration is centripetal (a=\frac{v^2}{r}), so we have:

\frac{v^2}{r}=a=\frac{GM}{r^2}=\frac{gR_E^2}{r^2}

v^2=\frac{gR_E^2}{r}

v=\sqrt{\frac{gR_E^2}{r}}

And if this orbit has a radius r=2R_E we have:

v=\sqrt{\frac{gR_E^2}{2R_E}}=\sqrt{\frac{gR_E}{2}}

svp [43]2 years ago
3 0

Answer:

The relation of speed v with the “RE” and “g” will be

                    v= √((gRE)/2)  

Explanation:

When a satellite is orbiting around the earth, the mathematical relation of its speed v is:

                        v= √((gRE^2)/r)    …….. (i)

Where,

g = gravitational acceleration  

RE = radius of earth  

r = hight from the surface of earth

In the question it is given that,  

                          r = 2RE              ……… (ii)

Putting equation (ii) in (i), we get  

                         v= √((gRE)/2)

You might be interested in
A small current element carrying a current of I = 1.00 A is placed at the origin given by d → l = 4.00 m m ^ j Find the magnetic
xxTIMURxx [149]

Answer:

the magnitude and direction of d → B on the x ‑axis at x = 2.50 m is -6.4 × 10⁻¹¹T(Along z direction)

the magnitude and direction of d → B on the z ‑axis at z = 5.00 m is 1.6 × 10⁻¹¹T(Along x direction)

Explanation:

Use Biot, Savart, the magnetic field

d\bar{B}=\frac{U}{4\pi } \frac{i(d\bar{l}\times r)}{r^2}

Given that,

i = 1.00A

d → l = 4.00 m m ^ j

r = 2.5m

Displacement vector is

\bar{r}=x\hat i+y\hat j+z \hat k\\

\bar{r}= (2.5m) \hat i +(0m)^2 + (0m)^2

 =2.5m

on the axis of x at x = 2.5

r = \sqrt{(2.5)^2 + (0)^2 + (0)^2}

r = 2.5m

And unit vector

\hat r =\frac{\bar{r}}{r}

= \frac{2.5 \hat i}{2.5}\\\\= 1\hat i

Therefore, the magnetic field is as follow

d\bar{B}=\frac{U}{4\pi } \frac{i(d\bar{l}\times r)}{r^2}

d\bar{B} = \frac{(10^-^7)(1)(4\times10^-^3j\times i}{(2.50)^2} \\\\d\bar{B} = -6.4\times10^{-11} T

(Along z direction)

B)r = 5.00m

Displacement vector is

\bar{r}=x\hat i+y\hat j+z \hat k\\

\bar{r}= (5.00m) \hat i +(0m)^2 + (0m)^2

 =5.00m

on the axis of x at x = 5.0

r = \sqrt{(5.00)^2 + (0)^2 + (0)^2}

r = 5.00m

And unit vector

\hat r =\frac{\bar{r}}{r}

= \frac{5.00 \hat i}{5.00}\\\\= 1\hat i\\

Therefore, the magnetic field is as follow

d\bar{B}=\frac{U}{4\pi } \frac{i(d\bar{l}\times r)}{r^2}

d\bar{B} = \frac{(10^-^7)(1)(4\times10^-^3j\times i}{(5.00)^2} \\\\d\bar{B} = 1.6\times10^{-11} T

(Along x direction)

7 0
3 years ago
A ball of a mass 0.3 kg is released from rest at a height of 8 m. How fast is it going when it hits the ground? Acceleration due
Vaselesa [24]
In order to solve this problem, there are two equations that you need to know to solve this problem and pretty much all of kinematics. The first is that d=0.5at^2 (d=vertical distance, a=acceleration due to gravity and t=time). The second is vf-vi=at (vf=final velocity, vi=initial velocity, a=acceleration due to gravity, t=time). So to find the time that the ball traveled, isolate the t-variable from the d=0.5at^2. Isolate the t and the equation now becomes \sqrt{(2d)/a}. Solving the equation where d=8 and a=9.8 makes the time \sqrt{(2*8)/9.8}=1.355 seconds. With the second equation, the vi=0 m/s, the vf is unknown, a=9.8 m/s^2 and t=1.355 sec. Substitute all these values into the equation vf-vi=at, this makes it vf-0=9.8(1.355). This means that the vf=13.28 m/s.
8 0
2 years ago
Read 2 more answers
In which type of process is there no change in the pressure of the system?
Lubov Fominskaja [6]
The answer is C hahaha
6 0
3 years ago
Read 2 more answers
Suppose a bicycle was coasting on a level surface, and there was no friction. What would happen to the bicycle?
vfiekz [6]

If there is no friction and no horizontal force acting on the bicycle, then the bicycle keeps rolling at a constant speed in a straight line, until the cows come home, Dante's Inferno freezes over, and the POTUS accepts some responsibility for his words, actions, and consequences.

5 0
3 years ago
Read 2 more answers
The illustration shows a crane which lifted a girder with a force of 1,200 N.
Amanda [17]
It’s D you have to times the 1200 and 40 which gives you 48,000
3 0
3 years ago
Other questions:
  • The nonmetals include which of the following groups? Use the periodic table to answer the question. Check all that apply. haloge
    8·1 answer
  • Where is the 3rd quadrant
    10·1 answer
  • How many molecules are indicated by writing 2 H2O? <br><br> A.) 2<br> B.) 3<br> C.) 4<br> D.) 1
    15·2 answers
  • Physics. I need help​
    8·1 answer
  • Are the objects described here in static equilibrium, dynamic equilibrium, or not equilibrium at all? Explain.
    6·2 answers
  • A Cannonball is shot at an angle of 35.0 degrees and is in flight for 11.0 seconds before hitting the ground at the same height
    12·1 answer
  • I have 2 bulbs one coverts 60% of energy to light 45% which is the most efficient and what happens to the rest of the energy
    15·2 answers
  • A pitcher throws a 0.145-kg baseball at a velocity of 30.0m/s. How
    5·1 answer
  • Ice core samples are used to measure…
    9·2 answers
  • Question 2 of 34
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!