The problem you have written you almost have it solved. Take the moles that you have calculated and multiply that by the molecular weight to get the grams.
The STP problem:
use the moles you calculated along with 1 atm for Pressure, and 273 for the temperature and plug into the PV = nRT equation. (also use 0.0821 for R)
From there you can solve for the volume
Hope this helps!
The amount of heat transferred in and out of the system is measured by calorimetry. The thermometer in the calorimeter is used to measure the temperature.
<h3>What are the parts of the calorimetry device?</h3>
The thermometer (A) is a device used to measure the final and the initial temperature of the water or any other liquid in a system. A metal vessel is a place where the reaction mixture is present.
In-vessel (B), water, and metal are placed before the beginning of the experiment. The styrofoam cup or the outer metal vessel (C) insulates the instrument, from regulating the heat transformation.
Therefore, part A measures the temperature of the reaction mixture.
Learn more about insulated containers here:
brainly.com/question/866735
Answer: The bond between boron and hydrogen in boron trihydride is covalent bond.
Explanation:
The type of bonding between the atoms forming a compound is determined by using the electronegativity difference between the atoms. According to the pauling's electronegativity rule:
- If
, then the bond is non-polar. - If
, then the bond will be covalent. - If
, then the bond will be ionic.
We are given:
Electronegativity for boron = 2.0
Electronegativity for hydrogen = 2.1

As,
is less than 1.7 and not equal to 0. Hence, the bond between boron and hydrogen is covalent bond.
For the first one the answer is B. and the second one is D.
Answer: Option (c) is the correct answer.
Explanation:
A limiting reagent is defined as a reagent that completely gets consumed in a chemical reaction. A limiting reagent limits the formation of products.
For example, we have given 5 mol of A and the reaction is 
Whereas when 4 mol B will react with 2 mol of A. Hence, 8 mol of B will react with 4 mol A as follows.
= 4 mol
As, the given moles of A is more than the required moles. Thus, it is considered as an excess reagent.
Hence, B is a limiting reagent because it limits the formation of products.
Thus, we can conclude that limiting reactant is the term used to describe the reactant that is used up completely and controls the amount of product that can be produced during a chemical reaction.