Answer:
a. 59 m/atm
Explanation:
- To solve this problem, we must mention Henry's law.
- <em>Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.</em>
- It can be expressed as: C = KP,
C is the concentration of the solution (C = 1.3 M).
P is the partial pressure of the gas above the solution (P = 0.022 atm).
K is the Henry's law constant (K = ??? M/atm),
∵ C = KP.
∴ K = C/P = (1.3 M)/(0.022 atm) = 59.0 M/atm.
Answer:
77,007 Pa
Explanation:
Hello!
In this case, since the equivalence statement for atmospheres and pascals is:
1 atm = 101,325 Pa
We can set up the following conversion factor to obtain the pressure in pascals:

Best regards!
The answer is Independent Variable
The steam rotates a turbine that activates a generator, which produces electricity. Many power plants still use fossil fuels to boil water for steam. Geothermal power plants, however, use steam produced from reservoirs of hot water found a couple of miles or more below the Earth's surface.
Answer: The number of grams of
in 1620 mL is 1.44 g
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 1620 ml = 1.62 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Mass of hydrogen =
The number of grams of
in 1620 mL is 1.44 g