Answer:
the empirical formula
Explanation:
I remember learning this last year.
Chemicals dissolved in water. Calcite is a good example, if I'm not mistaken.
Answer:
q1 = mCpΔT
= 18.016g × 1.84J/g.K × (418.15-373.15)
= 1491.72 J
q2 = n×ΔH vap
= 1mol ×44.0kJ/mol
= 44KJ
∴ qtotal = q1+ q2
= 1.498kJ + 44.0kJ
= 45.498KJ
Explanation: The heat flow can be separated into steps.all that is being observed at a constant pressure,the heat flow is equal to the enthalpy.
Explanation:
Normally, fusion involves two heavy hydrogen nuclides but since we have 4 light hydrogen nuclides, two of which underwent positron emission, thus changing two protons into neutrons plus 2 positrons and 2 neutrinos. The resulting nucleus from this fusion reaction is an He-4 nucleus.
Answer:
HCl
Explanation:
<em>Choices:</em>
<em>CO: 28.01g/mol</em>
<em>NO₂: 46g/mol</em>
<em>CH₄: 16.04g/mol</em>
<em>HCl: 36.4g/mol</em>
<em>CO₂: 44.01g/mol</em>
<em />
It is possible to identify a substance finding its molar mass (That is, the ratio between its mass in grams and its moles). It is possible to find the moles of the gas using general ideal gas law:
PV = nRT
<em>Where P is pressure of gas 0.764atm; V its volume, 0.279L; n moles; R gas constant: 0.082atmL/molK and T its absolute temperature, 295.85K (22.7°C + 273.15).</em>
Replacing:
PV = nRT
PV / RT = n
0.764atm*0.279L / 0.082atmL/molKₓ295.85K = n
<em>8.786x10⁻³ = moles of the gas</em>
<em />
As the mass of the gas is 0.320g; its molar mass is:
0.320g / 8.786x10⁻³moles = 36.4 g/mol
Based in the group of answer choices, the identity of the gas is:
<h3>HCl</h3>
<em />