hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.
<em><u>pl</u></em><em><u>ease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Due to lava which heats water where water vapour is comes
Answer:
Over time the metal will cool and the water will heat up. Eventually the two objects will have the same temperature
Explanation:
Answer:
Three orbitals
Explanation:
The electronic configuration of carbon is given as follows;
1s²2s²2p²
Therefore, out of the six electrons of the carbon atoms, 4 fill the 1s and 2s orbitals with 2 electrons each, while the two remaining electrons are situated in the 2p orbital, with the electrons in the 2p orbital will remain unpaired such that they will have similar quantum numbers in accordance with Pauli exclusion principle.
I don’t know about this ♀️