Assuming you mean temperature
Answer: The third law of thermodynamics
Answer:
the answer is The pneumatic mechanical device can only be used as a de-icing device.
Explanation:
An ice protection system prevents the formation of ice, or enables the aircraft to shed the ice before it can grow to a dangerous thickness. Ice protection systems are designed to keep atmospheric ice from accumulating on aircraft surfaces such as wings, propellers and engine intakes.
The pneumatic mechanical device is the Pneumatic deicing boots which was invented by the Goodrich Corporation in 1923. The pneumatic boot is usually made of layers of rubber, with one or more air chambers between the layers.
Any design which utilizes either a mechanical means of breaking the bond of ice to the surface, or which operates on a periodic cycle, is necessarily a de-ice system.
Answer:
Explanation:
The energy of a photon is given by the equation
, where h is the <em>Planck constant</em> and f the frequency of the photon. Thus, N photons of frequency f will give an energy of
.
We also know that frequency and wavelength are related by
, so we have
, where c is the <em>speed of light</em>.
We will want the number of photons, so we can write

We need to know then how much energy do we have to calculate N. The equation of power is
, so for the power we have and considering 1 second we can calculate the total energy, and then only consider the 4% of it which will produce light, or better said, the N photons, which means it will be
.
Putting this paragraph in equations:
.
And then we can substitute everything in our equation for number of photons, in S.I. and getting the values of constants from tables:

Answer:
D.
Explanation:
To solve the exercise it is necessary to apply the concepts related to the Magnetic Field described by Faraday.
The magnetic field is given by the equation:

Where,
Permeability constant
d = diameter
I = Current
For the given problem we have a change in the diameter, twice that of the initial experiment, therefore we define that:


The ratio of change between the two is given by:




Therefore the correct answer is D.
Answer:
3.1 miles
Explanation:
To solve this question it is important to remember that the distance between two mile markers is approximately 1 mile
Once this is known, the question becomes very easy to solve. We make two triangle, which have the following three points
Triangle 1: Hot-Air-Balloon, Ground, Milepost 1 - With angle of depression 20
Triangle 2: Hot-Air-Balloon, Ground, Milepost 2 - With angle of depression 18
As a reminder, the angle of depression is simply the angle the balloonist's head makes with the horizontal plane to be able to see the milepost.
From this we can simply drive two formulas using the Tan function
Equation 1 - 
Equation 2 - 
Solving them simultaneously we get the value of height (h) to be 3.0852 miles or 3.1 miles