Answer:
191.36 N/m
Explanation:
From the question,
The Potential Energy of the safe = Energy of the spring when it was compressed.
mgh = 1/2ke²............... Equation 1
Where m = mass of the safe, g = acceleration due to gravity, h = height of the save above the heavy duty spring , k = spring constant, e = compression
Making k the subject of the equation,
k =2mgh/e²................ Equation 2
Given: m = 1100 kg, h = 2.4 mm = 0.0024 m, e = 0.52 m
Constant: g = 9.8 m/s²
Substitute into equation 2
k = 2(1100)(9.8)(0.0024)/0.52²
k = 51.744/0.2704
k = 191.36 N/m
Hence the spring constant of the heavy-duty spring = 191.36 N/m
Answer:
6 meters away
Explanation:
6*1.4= 8.4 which is pretty close
Answer:
No work is performed or required in moving the positive charge from point A to point B.
Explanation:
Lets take
Q= Positive charge which move from point A to point B along
Voltage difference,ΔV =V₁ - V₂
The work done
W = Q . ΔV
Given that charge is moved from point A to point B along an equipotential surface.It means that voltage difference is zero.
ΔV = 0
So
W = Q . ΔV
W = Q x 0
W= 0 J
So work is zero.