MA = (Effort Distance)/(Effort Resistance) = L/H
L = MA * H = 5 * 8" = 40"
Answer:
Scalar quantity is the Physical quantity expresed only by their magnitude.
Answer:
<h3>
a)</h3>




<u>=> R= 6 Ohms(Ω)</u>
<h3>b)</h3>

<em>these lights operate at the usual 240 volts direct from the main electricity supply. Therefore,</em>

<em>R and 100 can interchange places</em>


<u>=> R = 576 Ω</u>
<u></u>
By Ohm's Law:

=> 240 = I × 576
=>
=> I = 0.417 A
<h3 /><h3>c)</h3>
I don't know it's resistance,... so sorry
<h3>d)</h3>
The brightness of the bulb in series is <em><u>less than</u></em> when they're placed individually.
For bulbs in series their resistance gets added to form the equivalent resistance of the two bulbs.
Their resistances are nothing but mere numbers and the sum of two numbers(positive of course) is greater than the numbers.
So, the effective resistance of some bulbs in series <u>is more</u> than the individual resistance.
And
<em>Brightness, i. e., Power</em>

If resistance increases, Power decreases.
Here, the effective resistance was for sure larger, therefore resistance was increasing, hence power decreased taking brightness along with it.
Answer: D. the distance between the highest points of consecutive waves
Explanation:
The wavelength of a wave is defined as the <em>distance traveled by a periodic perturbation that propagates through a medium in a given time interval</em>. It is usually represented by
and can be calculated if the frequency of the wave is known, since there is an inverse relationship between both.
In the specific case of a periodic sine wave (which is the way in which a wave is usually represented graphically) the wavelength can be determined as the distance between two consecutive maxima of the disturbance.
Therefore, the correct option is D.
Answer:
The speed will be "1.06 m/s".
Explanation:
The given values are:
Momentum,
m1 = 244 g
m2 = 45.2 g
On applying momentum conservation
,
Let v2 become the final golf's speed.
From Momentum Conservation
⇒ 
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 