Explanation:
PRIMERO HACES EL RECUENTO DEL TIEMPO Y LO CONVIERTES EN
SEGUNDOS Y ENTONCES
<em>t</em> = 227 s
= 227 S - 38 s = 189 s
= 38 s
LUEGO USANDO LA ECUACIÓN DE GALILEO GALILEI SSUPONIENDO
QUE EL MOVIL VIAJA A VELOCIDAD CONSTANTE
<em>v</em> = 3.50 m/189 s = 0.0185 m/s
PARA LA DISTANCIA NTRE B Y C
= 0.0185 m/S( 38 s) = 0.703 m
LA HORA EN QUE EL MOVIL PASA POR A ES
11:43:15 - 38 s - 189 s = 11:39:29
Answer:

Explanation:
Given data:
PERIOD OF MOTION IS T = 25.5 days
orbital speeds = 220 km/s
we know that
acceleration due to centripetal force is
Gravitational force
we know that

solving for





we know that
f =ma

solving for m



Answer:
<em>Force of gravity may not affect a pendulum during its equilibrium state</em>. But the gravity can affect the pendulum when a force occurs in any direction of the bob connected to the cord that makes a swing sideways. The gravity of pendulum never stops, it always accelerates. So the gravity affects the pendulum acceleration and speed.
<em>Similarly the tension in the cord will not affect the pendulum</em><em> </em>but if change in the length of the pendulum while keeping other factors constant changes the length of the period of pendulum. longer pendulum swings with lower frequency than shorter pendulums.
Answer:
-10m/s
Explanation:
only the magnitude of the velocity will change due to the change in direction of the car.
Answer:
Proper weighting
Explanation:
Proper weighing involves the condition of a scuba diver that is fully geared having a near empty tank and the BCD emptied with a held breadth is expected to float at eye level
The fundamental of adequate or good buoyancy of a scuba diver is to ensure proper weighting when diving, With proper weighting, there is more control for the diver when a safety stop is required. There is less need to carry excess weight that increases drag and gas consumption.