Answer:
The answer is "828.75"
Explanation:
Please find the correct question:
For W21x93 BEAM,

For A992 STREL,

Check for complete section:

Design the strength of beam =

Answer:
R = 31.9 x 10^(6) At/Wb
So option A is correct
Explanation:
Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A
Thus; R = L/μA,
Now from the question,
L = 4m
r_1 = 1.75cm = 0.0175m
r_2 = 2.2cm = 0.022m
So Area will be A_2 - A_1
Thus = π(r_2)² - π(r_1)²
A = π(0.0225)² - π(0.0175)²
A = π[0.0002]
A = 6.28 x 10^(-4) m²
We are given that;
L = 4m
μ_steel = 2 x 10^(-4) Wb/At - m
Thus, reluctance is calculated as;
R = 4/(2 x 10^(-4) x 6.28x 10^(-4))
R = 0.319 x 10^(8) At/Wb
R = 31.9 x 10^(6) At/Wb
Answer:
b) The null hypothesis should be rejected.
Explanation:
The null hypothesis is that the mean shear strength of spot welds is at least
3.1 MPa
H0: u ≥3.1 MPa against the claim Ha: u< 3.1 MPa
The alternate hypothesis is that the mean shear strength of spot welds is less than 3.1 MPa.
This is one tailed test
The critical region Z(0.05) < ± 1.645
The Sample mean= x`= 3.07
The number of welds= n= 15
Standard Deviation= s= 0.069
Applying z test
z= x`-u/s/√n
z= 3.07-3.1/0.069/√15
z= -0.03/0.0178
z= -1.68
As the calculated z= -1.68 falls in the critical region Z(0.05) < ± 1.645 the null hypothesis is rejected and the alternate hypothesis is accepted that the mean shear strength of spot welds is less than 3.1 MPa
Answer:
Heat transfer rate(Q)= 1.197kW
Power output(W)=68.803kW