The process that produces the energy radiated by stars is nuclear fusion in the core.
For a star on the main sequence, it's the fusion of hydrogen nuclei into helium.
Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
-- Toss a rock straight up. The kinetic energy you give it
with your hand becomes potential energy as it rises.
Eventually, when its kinetic energy is completely changed
to potential energy, it stops rising.
-- When you're riding your bike and going really fast, you come
to the bottom of a hill. You stop pedaling, and coast up the hill.
As your kinetic energy changes to potential energy, you coast
slower and slower. Eventually, your energy is all potential, and
you stop coasting.
-- A little kid on a swing at the park. The swing is going really fast
at the bottom of the arc, and then it starts rising. As it rises, the
kinetic energy changes into potential energy, more and more as it
swings higher and higher. Eventually it reaches a point where its
energy is all potential; then it stops rising, and begins falling again.
The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food).
<span>Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a10X (most common) eyepiece lens, we get total magnifications of 40X (4X times10X), 100X , 400X and 1000X.</span>