Answer:
mercury and alcohol
ii) used to test temperatures
Answer: The correct option is A ( horizontally towards the east)
Explanation:
Magnetic field is a region around a magnet or a current- carrying conductor, where a magnetic force is experienced. The magnetic effect of electric current was first discovered in the early 1820 by Oersted. Using a wire that had current flowing through it and a pivoted magnetic needle, he discovered that the direction of deflection depended on the direction of the current and whether the wire was above or below the needle.
From the way the needle turns when current when current carrying wire is held parallel to it, he therefore concluded that:
--> a current has magnetic field all round it,
--> the magnetic field is in a direction perpendicular to the current.
The above discovery was now modified in Fleming's left hand rule which states that when conductor carrying current is placed in a magnetic field, the conductor will experience a force perpendicular to both the field and the flow of current.
Therefore from the question, a vertical wire carrying current in DOWNWARD direction is placed in a HORIZONTAL magnetic field directed to the NORTH. The direction of the force on the wire is to the EAST.
Given Information:
Voltage of circuit A = Va = 208 Volts
Current of circuit A = Ia = 40 Amps
Voltage of circuit B = Vb = 120 Volts
Current of circuit B = Ib = 20 Amps
Required Information:
Ratio of power = Pa/Pb = ?
Answer:
Ratio of power = Pa/Pb = 52/15
Explanation:
Power can be calculated using Ohm's law
P = VI
Where V is the voltage and I is the current flowing in the circuit.
The power delivered by circuit A is
Pa = Va*Ia
Pa = 208*40
Pa = 8320 Watts
The power delivered by circuit B is
Pb = Vb*Ib
Pb = 120*20
Pb = 2400 Watts
Therefore, the ratio of the maximum power delivered by circuit A to that delivered by circuit B is
Pa/Pb = 8320/2400
Pa/Pb = 52/15
Answer:
Resonance depends on objects, this may happen for example when you play guitar in a given room, you may find that for some notes the walls or some object vibrate more than for others. This is because those notes are near the frequency of resonance of the walls.
So waves involved are waves that can move or affect objects (in this case the pressure waves of the sound, and the waves that are moving the wall).
this means that the waves are mechanic waves.
Now, in electromagnetics, you also can find resonance frequencies for electromagnetic waves trapped in things called cavities, but this is a different topic.
Answer:
when completing a science experiment it is important to run multiple tests do as to reduce the risk of any outliers of false results