Answer:
v = 15 m / s
Explanation:
In this exercise we are given the position function
x = 5 t²
and we are asked for the average velocity in an interval between t = 0 and t= 3 s, which is defined by the displacement between the time interval
let's look for the displacements
t = 0 x₀ = 0 m
t = 3
= 5 3 2
x_{f} = 45 m
we substitute

v = 15 m / s
Answer:
The answer is letter b. All of these should be considered when deciding on a report format.
Explanation:
A Professional Report is a type of formal document about a topic or information that is intended for a specific audience or purpose. The report's style of writing needs a lot of knowledge from the writer. Oftentimes, it involves the following important elements: <em>Title, Summary, Body, Discussion, Conclusion and Recommendation. </em>
The writer should write according to his target audience and purpose. He also needs to consider the length of his report, as well as the suitable words and sentences that he should use.
Thus, all of the choices are important in writing a professional report. So, the answer is letter b.
Complete question:
A taut rope has a mass of 0.123 kg and a length of 3.54 m. What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m if the waves are to travel at 28.0 m/s ?
Answer:
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Explanation:
Velocity = Frequency X wavelength
V = Fλ ⇒ F = V/λ
F = 28/0.6 = 46.67 Hz
Angular frequency (ω) = 2πF = 2π (46.67) = 93.34π rad/s
Average power supplied to the rope will be calculated as follows

where;
ω is the angular frequency
A is the amplitude
V is the velocity
μ is mass per unit length = 0.123/3.54 = 0.0348 kg/m
= 1676.159 watts
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Answer: They are identical brightness
Explanation:
If the lights are assumed to be resistance bulbs
Each light has the same current and will each drop one third of the supply voltage.