Hello!
The answer that makes most sense to me is option A.
~ Hope I helped! ~
(a) Equating centripetal force to friction force, one finds the relation
v² = kar
for car speed v, coefficient of friction k, radius of curvature r, and downward acceleration a.
There is already downward acceleration due to gravity. The additional accceleration due to the wing is
a = F/m = 10600 N/(805 kg) ≈ 13.1677 m/s²
We presume this is added to the 9.80 m/s² gravity provides, so the coefficient of friction is
k = v²/(ar) = (54 m/s)²/((13.1677 m/s² +9.80 m/s²)·(155 m))
k ≈ 0.8191
(b) The maximum speed is proportional to the square root of the downward acceleration. Changing that by a factor of 9.80/(9.80+13.17) changes the maximum speed by the square root of this factor.
max speed with no wing effect = (54 m/s)√(9.8/22.97) ≈ 35.27 m/s
The answer is wave.
A wave can be defined as a rhythmic flow that moves over a medium from one place to the different area.
1.2 x (2.2 x 10⁵) = 264,000 Ω
0.8 x (2.2 x 10⁵) = 176,000 Ω
With a 'nominal' value of 220,000 Ω, it could actually be anywhere <em>between 176,000Ω and 264,000Ω</em> .