Answer:
The answer is 2,416 m/s. Let's jump in.
Explanation:
We do work with the amount of energy we can transfer to objects. According to energy theory:
W = ΔE
Also as we know W = F.x
We choose our reference point as a horizontal line at the block's rest point.<u> At the rest, block doesn't have kinetic energy</u> and <u>since it is on the reference point(as we decided) it also has no potential energy.</u>
Under the force block gains;
W = F.x → 
In the second position block has both kinetic and potential energy. Following the law of conservation of energy;
W = ΔE = Kinetic energy + Potantial Energy
W = ΔE = 
Here we can find h in the triangle i draw in the picture using sine theorem;
In a triangle 
In our situation
→ 
Therefore

→ 
<h2>
The seagull's approximate height above the ground at the time the clam was dropped is 4 m</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 3 s
Substituting
s = ut + 0.5 at²
s = 0 x 3 + 0.5 x 9.81 x 3²
s = 44.145 m
The seagull's approximate height above the ground at the time the clam was dropped is 4 m
It was decrease because the water js going from one place to another
Answer:
time taken is equal to 14,156 years
Explanation:
we know,

at t = 0
Y(0) = A
given that half life of plutonium 239 = 24,200



hence time taken is equal to 14,156 years
I think it's B, that's the only case where something is moving. I'm actually doing the quiz right now lol