When an astronaut brings a cube from the Earth to the Moon, the inertial mass remains constant, but the weight decreases.
<h3>What is the difference between mass and weight?</h3>
Mass of the body is defined as the amount of matter a body have. It is denoted by m and its unit is kg.
Weight is defined as the amount of force an object expert on the surface. It is given as the product of mass and the gravitational pull.
When an astronaut brings a cube from the Earth to the Moon, the inertial mass remains constant, but the weight decreases.Because the value of the gravitational acceleration is different on the moon.
Hence, option D is correct.
To learn more about the mass, refer to the link;
brainly.com/question/19694949
#SPJ4
A. The acceleration of the ball while it is in flight?
magnitude is 0 m/s² (magnitude is zero)
B. The velocity of the ball when it reaches its maximum height is 0 m/s (magnitude is zero)
C. The initial velocity of the ball 8.036 m/s upward
D. The maximum height reached by the ball is 3.29 m
<h3>A. How to determine the acceleration in the flight</h3>
Considering that the ball came to rest after 1.64s, it means the entire acceleration of the flight is zero as the ball was not moving in any form again.
<h3>B. How to determine the velocity at maximum height</h3>
At maximum height, the velocity of the ball is zero as it no longer has magnitude to keep going upwards. Hence the ball begins to ball down.
<h3>C. How to determine the initial velocity</h3>
- Acceleration due to gravity (g) = 9.8 m/s²
- Final velocity (v) = 0 m/s
- Time of flight (T) = 1.64 s
- Time to reach maximum height (t) = T / 2 = 1.64 / 2 = 0.82 s
- Initial velocity (u) =?
v = u - gt (since the ball is going against gravity)
0 = u - (9.8 × 0.82)
0 = u - 8.036
Collect like terms
u = 0 + 8.036
u = 8.036 m/s upward
<h3>D. How to determine the maximum height reached by the ball</h3>
- Time to reach maximum height (t) = T / 2 = 1.64 / 2 = 0.82 s
- Acceleration due to gravity (g) = 9.8 m/s²
- Maximum height (h)
h = ½gt²
h = ½ × 9.8 × 0.82²
h = 3.29 m
Learn more about motion under gravity:
brainly.com/question/20385439
#SPJ1
Answer:
He took a picture (or "shot") of the buffaloes. How cute :)
The answer is B. P waves.
I took the test and it was correct. I hope this helps!
Answer:
It is a parallel connection
Explanation:
In parallel connection the
Cell is not easily used up because the cells share the total current generated together with all bulbs.
But a major problem is the bulbs must not be left together undisconnected to avoid exhaustion arising from short fall in the strength of one cell as this bounds to affect others