Solving this chemistry is a little bit hard because the question didn't give some important detailed.
So first, there are a couple problems with your question.
We will just need to know which direction will it proceed to reach equilibrium.
Your expression for Kc (and Qc ) for the reaction should be:
Kc = [C] / [A] [B]^2
You have not provided a value for Kc, so a value of Qc tells you absolutely nothing. Qc is only valuable in relation to a numerical value for Kc. If Qc = Kc, then the reaction is at equilibrium. If Q < K, the reaction will form more products to reach equilibrium, and if Q > Kc, the reaction will form more reactants.
You multiply avogadro's number to what you were given.
8.30x10^23 * 6. 0221409x10^23
=1.357*10^25
That should be the right answer but I'm not sure. It has been awhile since I have done this.
Answer:
There is more space between gas particles than the size of the particles.
Explanation:
This scenario can be understand by taking a very simple example. As we know that 1 mole of any gas at standard temperature and pressure occupy 22.4 liters of volume. Lets take Hydrogen gas and Oxygen gas, 1 mole of each gas will occupy same volume. Why it is so? Why same volume although Oxygen is 16 times more heavier? This is because the space between gas molecules is very large. Approximately the distance between gas molecules is 300 times greater than their own diameter from its neighbor molecules.
Answer:
To obtain the grams of fat that the ground round has, knowing that it weighs 1.33 pounds we must pass this value to grams. Since 1 pound equals 453.59 grams, 1.33 pounds equals 603.27 (453.59 x 1.33).
Now, to obtain 29 percent of 603.27, we must make the following calculation: 603.27 / 100 x 29, which gives a total of 174.94 grams.
In this way, your reasoning is correct and it is probably a mistake in the book.
I think its either A or D