Complete Question
A baseball is thrown horizontally with an initial speed of 10 m/s from the edge of a cliff. A stop watch measures the ball's time in the air until it hits the ground to be 4.3 s. How far does the baseball travel horizontally?
Answer:
The distance covered horizontally is 
Explanation:
From the question we are told that
The initial horizontal velocity is 
The time taken by the ball in the air is 
Generally the distance traveled by the ball is

=> 
=> 
<span>The image formed by a plane mirror is always virtual (meaning that the light rays do not actually come from the image), upright, and of the same shape and size as the object it is reflecting. A virtual image is a copy of an object formed at the location from which the light rays appear to come.</span>
Human error (average human reaction time is .2 seconds)
♥ If the wind is strong enough it can do so.
♥ By having a strong enough wind you can blow out the fire before the flame can consume any more vapor.
♥ If the wind is fast enough, like a birthday cake candle for example, the wind will burn out.
Answer:
F = 8.6 10⁻¹² N
Explanation:
For this exercise we use the law of conservation of energy
Initial. Field energy with the electron at rest
Em₀ = U = q ΔV
Final. Electron with velocity, just out of the electric field
Emf = K = ½ m v²
Em₀ = Emf
e ΔV = ½ m v²
v =√ 2 e ΔV / m
v = √(2 1.6 10⁻¹⁹ 51400 / 9.1 10⁻³¹)
v = √(1.8075 10¹⁶)
v = 1,344 10⁸ m / s
Now we can use the equation of the magnetic force
F = q v x B
Since the speed and the magnetic field are perpendicular the force that
F = e v B
F = 1.6 10⁻¹⁹ 1.344 10⁸ 0.4
For this exercise we use the law of conservation of energy
Initial. Field energy with the electron at rest
Emo = U = q DV
Final. Electron with velocity, just out of the electric field
Emf = K = ½ m v2
Emo = Emf
.e DV = ½ m v2
.v = RA 2 e DV / m
.v = RA (2 1.6 10-19 51400 / 9.1 10-31)
.v = RA (1.8075 10 16)
.v = 1,344 108 m / s
Now we can use the equation of the magnetic force
F = q v x B
Since the speed and the magnetic field are perpendicular the force that
F = e v B
F = 1.6 10-19 1,344 108 0.4
F = 8.6 10-12 N