Answer:
nsksbsjensnsjeiejensbsksks
Answer:
Complete ionic:
.
Net ionic:
.
Explanation:
Start by identifying species that exist as ions. In general, such species include:
- Soluble salts.
- Strong acids and strong bases.
All four species in this particular question are salts. However, only three of them are generally soluble in water:
,
, and
. These three salts will exist as ions:
- Each
formula unit will exist as one
ion and one
ion. - Each
formula unit will exist as one
ion and two
ions (note the subscript in the formula
.) - Each
formula unit will exist as one
and two
ions.
On the other hand,
is generally insoluble in water. This salt will not form ions.
Rewrite the original chemical equation to get the corresponding ionic equation. In this question, rewrite
,
, and
(three soluble salts) as the corresponding ions.
Pay attention to the coefficient of each species. For example, indeed each
formula unit will exist as only one
ion and one
ion. However, because the coefficient of
in the original equation is two,
alone should correspond to two
ions and two
ions.
Do not rewrite the salt
because it is insoluble.
.
Eliminate ions that are present on both sides of this ionic equation. In this question, such ions include one unit of
and two units of
. Doing so will give:
.
Simplify the coefficients:
.
Answer:
No.
Explanation:
No, individual particles do not move with the wave, it only oscillates back and forth its mean position. The particles in the medium transfer its energy to their neighboring particles and in that way the energy moves in the form of wave. The particles only vibrates on its means position instead of moving from one place to another. So we can conclude that Individual particles do not move with the wave.
Explanation:
Adhesion means the ability to stick on the surface of another substance.
Water exhibits adhesive forces due to which it is able to stick to the glass. Due to adhesive forces water spreads over the surface of glass and sticks to it.
These adhesive forces between the glass and water enough that it deforms the spherical shape of water molecules and help them stick to the surface of glass. As a result, adhesive forces overcome the repulsion between like molecules.
Hence, water is able to “stick” to the side of glass due to strong adhesive forces.