Answer:
Law 1. A body continues in its state of rest, or in uniform motion in a straight line, unless acted upon by a force.
Law 2. A body acted upon by a force moves in such a manner that the time rate of change of momentum equals the force.
Law 3. If two bodies exert forces on each other, these forces are equal in magnitude and opposite in direction.
Answer:
I think that the answer might be d
Answer:
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses
Explanation:
In this exercise you are asked to observe the change in velocity in a projectile launch.
If we assume that the friction force is small, the velocity in the x-axis must be constant
vₓ = v₀ₓ
Therefore, the arrow (red) that represents this movement must not change in magnitude.
In the direction of the y axis, the acceleration of gravity is acting, so the magnitude of the velocity in this axis changes
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses
Answer:
On moon time period will become 2.45 times of the time period on earth
Explanation:
Time period of simple pendulum is equal to
....eqn 1 here l is length of the pendulum and g is acceleration due to gravity on earth
As when we go to moon, acceleration due to gravity on moon is
times os acceleration due to gravity on earth
So time period of pendulum on moon is equal to
--------eqn 2
Dividing eqn 2 by eqn 1


So on moon time period will become 2.45 times of the time period on earth