1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zloy xaker [14]
3 years ago
5

If the work function of a material is such that red light of wavelength 700 nm just barely initiates the photoelectric effect, w

hat must the maximum kinetic energy of ejected electrons be when violet light of wavelength 400 nm illuminates the material?
Express your answer with the appropriate units.

Kmax = J
Physics
1 answer:
Mumz [18]3 years ago
4 0

Answer: 2.13(10)^{-19} J

Explanation:

The photoelectric effect consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.  

If the light is a stream of photons and each of them has energy, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.  

<u>This is what Einstein proposed:  </u>

Light behaves like a stream of particles called photons with an energy  E

E=h.f (1)

Where:

h=6.63(10)^{-34}J.s is the Planck constant  

f is the frequency

Now, the frequency has an inverse relation with the wavelength \lambda:  

f=\frac{c}{\lambda} (2)  

Where c=3(10)^{8}m/s is the speed of light in vacuum  and \lambda=400nm=400(10)^{-9}m is the wavelength of the absorbed photons in the photoelectric effect.

Substituting (2) in (1):

E=\frac{h.c}{\lambda} (3)

So, the energy E of the incident photon must be equal to the sum of the Work function \Phi of the metal and the maximum kinetic energy K_{max} of the photoelectron:  

E=\Phi+K_{max} (4)  

Rewriting to find K_{max}:

K_{max}=E-\Phi (5)

Where \Phi is the minimum amount of energy required to induce the photoemission of electrons from the surface of a metal, and its value depends on the metal:

\Phi=h.f_{o}=\frac{h.c}{\lambda_{o}} (6)

Being \lambda_{o}=700nm=700(10)^{-9}m the threshold wavelength (the minimum wavelength needed to initiate the photoelectric effect)

Substituting (3) and (6) in (5):  

K_{max}=\frac{h.c}{\lambda}-\frac{h.c}{\lambda_{o}}

K_{max}=h.c(\frac{1}{\lambda}-\frac{1}{\lambda_{o}}) (7)

Substituting the known values:

K_{max}=(6.63(10)^{-34}J.s)(3(10)^{8}m/s)(\frac{1}{400(10)^{-9}m}-\frac{1}{700(10)^{-9}m})

K_{max}=2.13(10)^{-19} J >>>>>This is the maximum kinetic energy that ejected electrons must have when violet light illuminates the material

You might be interested in
Hello please help i’ll give brainliest
malfutka [58]

Acceleration is the rate of change in an object's velocity

3 0
3 years ago
A rigid tank contains 1 kg of air (ideal gas) at 15 °C and 210 kPa. A paddle wheel supplies work input to the air such that fina
lisov135 [29]

Answer:

-58.876 kJ

Explanation:

m = mass of air = 1 kg

T₁ = Initial temperature = 15°C

T₂ = Final temperature = 97°C

Cp = Specific heat at constant pressure = 1.005 kJ/kgk

Cv = Specific heat at constant volume = 0.718 kJ/kgk

W = Work done

Q = Heat = 0 (since it is not mentioned we are considering adiabatic condition)

ΔU = Change in internal energy

Q = W+ΔU

⇒Q = W+mCvΔT

⇒0 = W+mCvΔT

⇒W = -mCvΔT

⇒Q = -1×0.718×(97-15)

⇒Q = -58.716 kJ

5 0
2 years ago
Describe two reasons why an alpha particle is less penetrating than a beta or gamma particle.
uysha [10]
Alpha particles travel through the air they collide with oxygen and nitrogen molecules. While they collide with these molecules, they lose some energy until all energy are used up and they are absorbed. These particles can be absorbed by a sheet of paper or by the air. On the other hand, beta particles and gamma particles move faster than the alpha particles and are poor at ionizing atoms or molecules thus it takes more of the material to be able to absorb these particles.
8 0
3 years ago
Read 2 more answers
7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
jasenka [17]

Weight of the carriage =(m+M)g =142.1\ N

Normal force =Fsin(\theta) + W = 197.1\ N

Frictional force =\mu N=27.59\ N

Acceleration =4.66\ m\ s^{-2}

Explanation:

We have to look into the FBD of the carriage.

Horizontal forces and Vertical forces separately.

To calculate Weight we know that both the mass of the baby and the carriage will be added.

  • So Weight(W) =(m+M)\times g =(9.5+5)\ kg \times 9.8 =142.1\ Newton\ (N)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with F_x, force of 110\ N acting vertically downward.Both are downward and Normal is upward so Normal force =Summation\ of\ both\ forces

  • Normal force (N) = Fsin(\theta)+W=110sin(30) + 142.1 =197.1\ N
  • Frictional force (f) =\mu N=0.14\times 197.1 =27.59\ N

To calculate acceleration we will use Newtons second law.

That is Force is product of mass and acceleration.

We can see in the diagram that F_y=Horizontal and F_x=Vertical component of forces.

So Fnet = Fy(Horizontal) - f(friction) = m\times a

  • Acceleration (a) =\frac{Fcos(\theta)-\mu N}{mass(m)} =\frac{(95.26-27.59)}{14.5}= 4.66\ m\ s{^2 }

So we have the weight of the carriage, normal force,frictional force and acceleration.

3 0
2 years ago
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
Other questions:
  • Consider the following statements. A. Heat flows from an object at higher temperature to an object at lower temperature; B. Heat
    5·1 answer
  • The same force is applied to two skateboards. One rolls across the room and the other moves a few feet and comes to a stop. Wher
    10·2 answers
  • A flashlight is an example of
    11·1 answer
  • Which one of the following statements is true?
    9·1 answer
  • Review Multiple-Concept Example 7 in this chapter as an aid in solving this problem. In a fast-pitch softball game the pitcher i
    15·1 answer
  • A positively charged particle of certain mass may be suspended (at rest) in electric field of suitable strength if the field is
    14·1 answer
  • Somebody tell me what the answer is please
    5·2 answers
  • SCIENCE whoever gets this first will get a brainlest
    9·2 answers
  • Identify the amplitude in the wave image below.*<br> F. G H J
    10·1 answer
  • How does the interstellar medium interact with stars?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!