Answer:
It will go about 45-50 mph.
Explanation:
Depending on what you are hauling.
Answer:
The heat transferred into the system is 183.5 J.
Explanation:
The first law of thermodynamics relates the heat transfer into or out of a system to the change of internal and the work done on the system, through the following equations.
ΔU = Q - W
where;
ΔU is the change in internal energy
Q is the heat transfer into the system
W is the work done by the system
Given;
ΔU = 155 J
W = 28.5 J
Q = ?
155 = Q - 28.5
Q = 155 + 28.5
Q = 183.5 J
Therefore, the heat transferred into the system is 183.5 J.
There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
Product of my research: 1 HP = 746 watts .
12 HP = (12 x 746 W) = 8,952 W
8,952 W = 8.952 kW
The density is 5.22 g/cm³.
Density=

Density=

Density= 5.22 g/cm³