Answer:
3.676 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have different values of V and T:
(V₁T₂) = (V₂T₁)
V₁ = 3.5 L, T₁ = 25°C + 273 = 298 K,
V₂ = ??? L, T₂ = 40°C + 273 = 313 K,
- Applying in the above equation
(V₁T₂) = (V₂T₁)
∴ V₂ = (V₁T₂)/(T₁) = (3.5 L)(313 K)/(298 K) = 3.676 L.
Answer:
The two variables affecting the rate of diffusion are the concentration gradient and size of the molecule. Concentration gradient: The movement of the substance is generally along the concentration gradient of the solute and it moves from a region of its higher concentration to a region of its lower concentration.
<h3>Answer :-</h3>
The pharmaceutical industry discovers, develops, produces, and markets drugs or pharmaceutical drugs for use as medications to be administered (or self-administered) to patients, with the aim to cure them, vaccinate them, or alleviate the symptoms. Pharmaceutical companies may deal in generic or brand medications and medical devices.
Answer:
The concentration of an acid in a solution can be determined by making an acid-base titration. To do this, a known volume of the acid solution is gradually added alkali solution whose concentration is known, until a neutral pH is reached.
Explanation: