Answer:
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Explanation:
given data
pressure p1 = 1.4 MPa = 14 bar
temperature t1 = 32°C
exit pressure = 0.08 MPa = 0.8 bar
to find out
the quality of the refrigerant exiting the expansion valve
solution
we know here refrigerant undergoes at throtting process so
h1 = h2
so by table A 14 at p1 = 14 bar
t1 ≤ Tsat
so we use equation here that is
h1 = hf(t1) = 332.17 kJ/kg
this value we get from table A13
so as h1 = h2
h1 = h(f2) + x(2) * h(fg2)
so
exit quality = 
exit quality = 
so exit quality = 0.2337 = 23.37 %
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Answer:
The Poisson's Ratio of the bar is 0.247
Explanation:
The Poisson's ratio is got by using the formula
Lateral strain / longitudinal strain
Lateral strain = elongation / original width (since we are given the change in width as a result of compession)
Lateral strain = 0.15mm / 40 mm =0.00375
Please note that strain is a dimensionless quantity, hence it has no unit.
The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.
Longitudinal strain = 4.1 mm / 270 mm = 0.015185
Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247
The Poisson's Ratio of the bar is 0.247
Please note also that this quantity also does not have a dimension
Answer:
Explanation:
Enforcing OSHA, Occupational Safety and Health Administration, standards is not a job for electricians, lawmakers or tax collectors. The right answer is safety inspectors.