1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sliva [168]
3 years ago
9

If a 9V battery produces a current of 3 A through a load, what is the resistance of the load

Engineering
2 answers:
Elden [556K]3 years ago
7 0

3 ohms hope this helps :D ❤

Andrej [43]3 years ago
5 0

Answer:

3 ohms

Explanation:

You might be interested in
15- Vipsana's Gyros House sells gyros. The cost of ingredients (pita, meat, spices, etc.) to make a gyro is $2.00. Vipsana pays
sineoko [7]
D is a great answer
4 0
2 years ago
A silicon diode has a saturation current of 6 nA at 25 degrees Celcius. What is the saturation current at 100 degrees Celsius?
Illusion [34]

Answer:

0.0659 A

Explanation:

Given that :

I_{0}  =  6nA ( saturation current )

at 25°c = 300 k ( room temperature )

n = 2  for silicon diode

Determine the saturation current at 100 degrees = 373 k

Diode equation at room temperature = I = Io \frac{V}{e^{0.025*n} }

next we have to determine the value of V at 373 k

q / kT = (1.6 * 10^-19) / (1.38 * 10^-23 * 373) = 31.08 V^-1

Given that I is constant

Io = \frac{e^{0.025*2} }{31.08} =  0.0659 A

3 0
3 years ago
2. A well of 0.1 m radius is installed in the aquifer of the preceding exercise and is pumped at a rate averaging 80 liter/min.
hodyreva [135]

Question:

The question is not complete. See the complete question and the answer below.

A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.

Answer:

T = 0.11029m²/sec

Radius of influence = 93.304m

expected drawdown = 3.9336m

Explanation:

See the attached file for the explanation.

8 0
3 years ago
A double-pane insulated window consists of two 1 cm thick pieces of glass separated by a 1.8 cm layer of air. The window measure
Elanso [62]

Answer:

(b). T = 22.55 ⁰C

(c). q = 557.8 W

Explanation:

we take follow a step by step process to solving this problem.

from the question, we have that

The two glass pieces is separated by a 1.8 cm distance layer of air.

the thickness of glass piece is 1 cm

width = 4 m

the height = 3 m

(a). the sketch of the thermal circuit is uploaded in the picture below.

(b).  the thermal resistance due to the conduction in the first glass plane is given thus;

R₁ = Lg / Kg A ................(1)

given that Kg rep. the thermal conductivity of the glass plane

A = conduction surface area

Lg = Thickness of glass plane4

taking the thermal conductivity of glass plane as Kg = 0.78 w/mk

inputting values into equation (1) we have,

R₁ = [1 (cm) ˣ 1 (m)/100 (cm)] / [(0.78 w/mk)(4m ˣ 3m)]

R₁ = 1.068 ˣ 10 ⁻³ k/w

Being that we have same thermal resistance in the first and second plane,

therefore R₁ = R₃ = 1.068 ˣ 10 ⁻³ k/w

⇒ Also the thermal resistance between air and glass as a result of the conduction by the layer is given thus

R₂ = La/KaA .....................(2)

given Ka = thermal conductivity of air

A = surface area

La = thickness of air

substituting values into the equation we have

R₂ = [1.8 (cm) ˣ 1 (m)/100 (cm)] / [(0.0262 w/mk)(4m ˣ 3m)]

R₂ = 5.73 ˣ 10⁻² k/w

Given the thermal resistance on the outer surface due to convection, we have

R₄ = 1/hA

inputting value gives R₄ = 1 / (12 w/m² ˣ 12m) = 6.94 ˣ 10⁻³k/w

R₄ = 6.94 ˣ 10⁻³k/w

Finally the sum total of thermal resistance = R₁ + R₂ + R₃ + R₄

R-total = 0.0663 kw

From this we can calculate the rate of heat loss

using  q = Ti - To / R-total ..............(3)

given Ti and To is the inside and outside temperature i.e. 27⁰C and -10⁰C

from equation (3),

q = 27- (-10) / 0.0063 = 557.8 W

q = 557.8 W  

⇒ Applying the heat transfer formula for inside surface glass temperature gives;

q = Ti - T₂ / R₃ + R₄

T₂ = Ti - q (R₃ + R₄)

T₂ = 27 - 557.8 (1.068ˣ10⁻³ + 6.94ˣ10⁻³ ) = 22.55°C

T₂ = 22.55°C

cheers i hope this helps

8 0
3 years ago
If you are interested only in the temperature range of 20° to 40°C and the ADC has a 0 to 3V input range, design a signal condit
mario62 [17]

Explanation:

Temperature range → 0 to 80'c

respective voltage output → 0.2v to 0.5v

required temperature range 20'c to 40'c

Where T = 20'c respective voltage

\begin{aligned}v_{20} &=0.2+\frac{0.5-0.8}{80} \times 20 \\&=0.2+\frac{0.3}{80} \times 20 \\V_{20} &=0.275 v\end{aligned}

\begin{aligned}\text { when } T=40^{\circ} C & \text { . } \\v_{40} &=0.2+\frac{0.5-0.2}{80} \times 40 \\&=0.35 V\end{aligned}

Therefore, Sensor output changes from 0.275v to 0.35volts for the ADC the required i/p should cover the dynamic range of ADC (ie - 0v to 3v)

so we have to design a circuit which transfers input voltage 0.275volts - 0.35v to 0 - 3v

Therefore, the formula for the circuit will be

\begin{array}{l}v_{0}=\left(v_{i n}-0.275\right) G \\\sigma=\ldots \frac{3-0}{0.35-0.275}=3 / 0.075=40 \\v_{0}=\left(v_{i n}-0.275\right) 40\end{array}

The simplest circuit will be a op-amp

NOTE: Refer the figure attached

Vs is sensor output

Vr is the reference volt, Vr = 0.275v

\begin{aligned}v_{0}=& v_{s}-v_{v}\left(1+\frac{R_{2}}{R_{1}}\right) \\\Rightarrow & \frac{1+\frac{R_{2}}{R_{1}}}{2}=40 \\& \frac{R_{2}}{R_{1}}=39 \quad \Rightarrow\end{aligned}

choose R2, R1 such that it will maintain required  ratio

The output Vo can be connected to voltage buffer if you required better isolation.

3 0
3 years ago
Other questions:
  • True or false? Engineering degree programs and engineering technology degree programs have a different requirements
    9·1 answer
  • Refectories are one of the types of ceramics that have low melting temperature. a)-True b)-False
    7·1 answer
  • I WILL GIVE BRAINLIEST IF ANSWER FAST What is the measurement of this dial caliper?
    5·2 answers
  • What is an isentropic process?
    7·1 answer
  • A device that helps increase field worker productivity by providing reliable location and time
    13·1 answer
  • For somebody
    12·1 answer
  • 5. Liam is working on a circuit and notices it's quite hot to the touch. What's causing the heat Liam Is noticing
    6·1 answer
  • The first step of the Engineering Design Process is to select the
    5·1 answer
  • Air at 403 K and 1 atm enters a convergent nozzle at a velocity of 150
    9·1 answer
  • 1. What did observations between 1912 and 1917 show?_____
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!