D = 110 m, t = 5 s
v o = 110 cs : 5 m = 22 m/s
-------------------------------------
v = v o - a t
v = 0 m/s, v o = 22 m/s, t = 4 s
0 = 22 - 4 a
4 a = 22
a = 22 : 4
a = 5.5 m/s²
g = 9.80 m/s²
9.80 : 5.5 = 0.56
Answer:
The magnitude of its acceleration is 5.5 m/s or 0.56 g.
Explanation:
Given that,
Initial speed of the rock, u = 30 m/s
The acceleration due to gravity at the surface of the moon is 1.62 m/s².
We need to find the time when the rock is ascending at a height of 180 m.
The rock is projected from the surface of the moon. The equation of motion in this case is given by :

It is a quadratic equation, after solving whose solution is given by:
t = 7.53 s
or
t = 8 seconds
(e)If it is decending, v = -20 m/s
Now t' is the time of descending. So,

Let h' is the height of the rock at this time. So,

or
h' = 155 m
Really? wow that's pretty cool
Answer: A 2m/s^2
Steps: Formula for acceleration. (Velocity Final - Initial Velocity) / Time
(24 - 0) / 12 = 2
hi, so the material that would normally form mineral crystals does not have time to form a crystalline structure because of very rapid cooling after volcanically erupting into the air or onto the surface. Obsidian is a volcanic glass.