Hello,
The answer is option C protons and neutrons.
Reason:
The middle of the nucleus contains the protons and the neutrons which contain the positive and electrical charges which decides the element which means option C will be your answer.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer:
n l m
����������������������������������
1 0 0 1s 1 2 2
����������������������������������
2 0 0 2s 1 2
2 1 1,0,-1 2p 3 6 8
����������������������������������
3 0 0 3s 1 2
3 1 1,0,-1 3p 3 6
3 2 2,1,0,-1,-2 3d 5 10 18
����������������������������������
4 0 0 4s 1 2
4 1 1,0,-1 4p 3 6
4 2 2,1,0,-1,-2 4d 5 10
4 3 3,2,1,0,-1,-2,-3 4f 7 14 32
Explanation:
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
I think that type of rock is call Igneous rock because the igneous rock is molten rock from volcanoes.
The oxidation number sulfur in H₂S is -2.
A compound's total number of oxidations must be zero.
The two hydrogen atoms in the chemical hydrogen sulfide, H₂S, each have an oxidation number of +1, making a total of +2. As a result, the compound's sulfur has an oxidation number of -2, and the total number of oxidations is 0.
Assume that the sulfur atom in H₂S has an oxidation number of x.
S be x.
Now,
2+x=0
⇒x=−2
<h3>What is oxidation number?</h3>
The total number of electrons that an atom either receives or loses in order to create a chemical connection with another atom is known as the oxidation number, also known as the oxidation state.
Depending on whether we are taking into account the electronegativity of the atoms or not, these phrases can occasionally have a distinct meaning. Coordination chemistry commonly makes use of the phrase "oxidation number."
<h3>What distinguishes an oxidation number from an oxidation state?</h3>
In contrast to the oxidation state, which indicates how oxidised an atom is in a molecule, the oxidation number describes the charge that the core metal atom will retain once all ligands have been removed.
To know more about oxidation number:
brainly.com/question/13182308
#SPJ4