Answer:
1 - theory
2 - law
3 - hypothesis
Explanation:
I'm pretty sure this is correct
Answer:
The star is at a distance of 100 parsecs.
Explanation:
The distance can be determined by means of the distance modulus:
(1)
Where M is the absolute magnitude, m is the apparent magnitude and d is the distance in units of parsec.
Therefore, d can be isolated from equation 1

Then, Applying logarithmic properties it is gotten:
(2)
The absolute magnitude is the intrinsic brightness of a star, while the apparent magnitude is the apparent brightness that a star will appear to have as is seen from the Earth.
Since both have the same spectral type is absolute magnitude will be the same.
Finally, equation 2 can be used:
Hence, the star is at a distance of 100 parsecs.
Key term:
Parsec: Parallax of arc seconds
Question: Predicting the shape of a molecule is relatively straight forward. A molecule's shape will always be determined by the number of electron pairs around the central atom. The number of electron pair corresponds to the number of atoms that are bound to the central atom of the molecule. For example, water contains two hydrogen atom bound to one atom of oxygen, giving the molecule a linear geometry.
Suppose that the model presented by student 1 is correct. Based on the information provided, what would be the bond angle in a molecule of perchlorate ion.
Answer: Suppose that the model presented by student 1 is correct The (perchlorate ion) will be a tetrahedral shape, O-Cl-O bond angle 109.5 due to four groups of bonding electrons and no lone pairs of electrons.
Answer:
Explanation:
average speed is distance traveled over time
v = (50 + 30(1.5)) / (2 + 1.5) = 27.1428571...
v = 27 km/hr