Answer:
A long uniformly charged wire has charge density λ=0.16μλ=0.16μC/m.
Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
First you calculate how many moles there are in 2.0 grams of hydrogen (H2) atoms.
Hydrogen has a relative atomic mass (RAM) of 1 g/mol, but there are 2 hydrogen atoms: 1 x 2 = 2 g/mol
To work out how many moles there are,
use the formula: n(moles) = mass ÷ molar mass
n(moles) = 2 grams ÷ 2 g/mol = 1 mol
Then use Avogadro's Constant : 6.023 x 10^23
= 1 x 6.023 x 10^23
= 6.023 x 10^23
Final step is to multiply it by the number of atoms, in this case there are 2.
= 6.023 x 10^23 x 2
= 12.046 x 10^23
= 1.205 x 10^24
that ^ should be your final answer
have a great day :)
The answer will be 12 nitrogen or N2 will be produced because if you changed the coefficient to 12 on the reactant side and distribute, the nitrogen would be 12 when distributed and what happens on one side has to equal to the other side, which is the product side.