<span>Data:
pH = 5.2
[H+] = ?
Knowing that: (</span><span>Equation to find the pH of a solution)</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
<span>
Solving:
</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
![5.2 = - log [H+]](https://tex.z-dn.net/?f=5.2%20%3D%20-%20log%20%5BH%2B%5D)
Knowing that the exponential is the opposite operation of the logarithm, then we have:
![[H+] = 10^{-5.2}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-5.2%7D)
Answer:
[Na₂CO₃] = 0.094M
Explanation:
Based on the reaction:
HCO₃⁻(aq) + H₂O(l) ↔ CO₃²⁻(aq) + H₃O⁺(aq)
It is possible to find pH using Henderson-Hasselbalch formula:
pH = pka + log₁₀ [A⁻] / [HA]
Where [A⁻] is concentration of conjugate base, [CO₃²⁻] = [Na₂CO₃] and [HA] is concentration of weak acid, [NaHCO₃] = 0.20M.
pH is desire pH and pKa (<em>10.00</em>) is -log pka = -log 4.7x10⁻¹¹ = <em>10.33</em>
<em />
Replacing these values:
10.00 = 10.33 + log₁₀ [Na₂CO₃] / [0.20]
<em> [Na₂CO₃] = 0.094M</em>
<em />
Answer:
Step 1-Light Dependent. CO2 and H2O enter the leaf.
Step 2- Light Dependent. Light hits the pigment in the membrane of a thylakoid, splitting the H2O into O2.
Step 3- Light Dependent. ...
Step 4-Light Dependent.
Step 5-Light independent.
Step 6-Light independent.