The physical method that can be used for obtaining a sample of salt from a small beaker of salt and water would be evaporation.
<h3>Separation of salt and water</h3>
A mixture of salt and water can be separated by a method known as evaporation. This is based on the assumption that the salt in question is a water-soluble salt.
In order to separate the salt/water mixture:
- Place the mixture in a suitable evaporating dish
- Boil the mixture until all the water evaporates.
- The remaining residue would be the salt
Care should be taken not to overheat the residue in order to avoid melting. Evaporation is generally used to separate a mixture of water and soluble salt. If the salt is insoluble, filtration using a suitable filter paper will filter off the salt while the water is collected as the filtrate.
More on evaporation can be found here: brainly.com/question/1097783
#SPJ1
Which physical method can be used for obtaining a sample of salt from a small beaker of salt water?
I believe you have to label out the positive metal ion and the delocalized electrons. They're the 2 things that makes up a metal structure.
In the diagram, the circles with the + symbol are the positive metal ions, since + represents positive. And the remaining - circles are the delocalized electrons, as electrons are negative.
And for how a metal conducts electricity, since they're delocalized mobile electrons present in any metal structures, they're able to move away from the metal to the positive side of the battery and more electrons can replace their place flowing from the negative side.
You must remember that oxidation number of hydrogen in acids is always +1, oxidation number of oxygen in oxides & acids is always -2... metals has always oxidation number on plus!
group NO3 comes from HNO3...and oxidation number of whole acid group is always on minus and equal to the amount of hydrogen atoms in this acid... so oxidation number of NO3 = -1
we have 2 NO3 groups so 2*(-1) = -2 and that is the reason why oxidation number of Fe in this formula must be +2... because sum of all elements always gives 0!
Now we could count of oxidation number for nitrogen... we write HNO3 and start counting from right to left:
3*(-2) from oxygens + 1 from hydrogen = -5
so nitrogen must have +5 oxidation number... because sum all in formula must be 0.
Answer is: sodium (Na) and iodine (I₂).
<span>
First ionic bonds in this salt are separeted
because of heat:
</span>NaI(l) → Na⁺(l) + I⁻(l).
Reaction of reduction
at cathode(-): Na⁺(l) + e⁻ → Na(l) /×2.
2Na⁺(l) + 2e⁻ → 2Na(l).
Reaction of oxidation
at anode(+): 2I⁻(l) → I₂(l) + 2e⁻.
The anode is positive
and the cathode is negative.
Explanation is in a file
bit.
ly/3a8Nt8n