During the digestion process, the first step would be mastication, lubrication with the saliva, and later on is being formed into a bolus. Bolus is the term used for food substance that is turned into small balls. When the bolus is formed, this is then pushed or moved to the stomach.
Answer:
Noble gases
Explanation:
The noble gases are non-metals that requires the highest amount of energy to remove an electron from their shells.
The reason for this difficult is that their electronic configuration confers a stable configuration them.
- The ionization energy is the energy required to remove the most loosely held electrons in an atom.
- Due to the special stability of noble gases, it is very difficult to remove electrons from an atom of noble gases.
The correct answer is letter a, whereas, carrying capacity
in captivity increases population size. It is because the carrying captivity is
the one responsible for having a maximum population size in which will help in
sustaining the necessities that the species need in the environment in which
makes it responsible for the population size to increase depending on its
capacity. The correct answer is letter a.
Yes this is true otherwise it would not be a solution
Answer:
- <u>two molecules of ammonia are formed by the reaction of one nitrogen and three hydrogen molecules.</u>
Explanation:
The balanced chemical equation provides information on:
- <u>Reactants</u>: those are the compounds that appear of the left side of the equation, each with its chemical formula.
- <u>Products</u>: those are the compounds that appear on the right side of the equation, again, each with its chemical formula.
- <u>Ratio</u>: the coefficients of each compound (the number to the left of the chemical formula) represent the ratio of the number of molecules that react and are formed.
In the given equation you have:
- Equation: N₂ + 3H₂ → 2NH₃
- The coefficients are 1 for nitrogen, 3 for hydrogen, and 2 for ammonia. Hence, 2 molecules of ammonia are formed by the reaction of 1 molecule of nitrogen and 3 molecules of hydrogen.