Answer:
The block has an acceleration of ![3 m/s^{2}](https://tex.z-dn.net/?f=3%20m%2Fs%5E%7B2%7D)
Explanation:
By means of Newton's second law it can be determine the acceleration of the block.
(1)
Where
represents the net force, m is the mass and a is the acceleration.
(2)
The forces present in x are
and
(the friction force):
![F_{x} = 10 N - 4 N](https://tex.z-dn.net/?f=F_%7Bx%7D%20%3D%2010%20N%20-%204%20N)
Notice that
subtracts to
since it is at the opposite direction.
![F_{x} = 6 N](https://tex.z-dn.net/?f=F_%7Bx%7D%20%3D%206%20N)
The forces present in y balance each other:
![F_{y} = 0](https://tex.z-dn.net/?f=F_%7By%7D%20%3D%200)
Therefore:
(3)
But
and writing (3) in terms of a it is get:
![a = 3 m/s^{2}](https://tex.z-dn.net/?f=a%20%3D%203%20m%2Fs%5E%7B2%7D)
So the block has an acceleration of
.
- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (
), en metros por segundo:
(1)
Donde:
- Módulo de compresibilidad, en newtons por metro cuadrado.
- Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que
y
, entonces la velocidad de las ondas sonoras es:
![v = \sqrt{\frac{2,16\times 10^{9}\,\frac{N}{m^{2}}}{1\times 10^{3}\,\frac{kg}{m^{3}} } }](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%2C16%5Ctimes%2010%5E%7B9%7D%5C%2C%5Cfrac%7BN%7D%7Bm%5E%7B2%7D%7D%7D%7B1%5Ctimes%2010%5E%7B3%7D%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%20%7D%20%7D)
![v\approx 1469,694\,\frac{m}{s}](https://tex.z-dn.net/?f=v%5Capprox%201469%2C694%5C%2C%5Cfrac%7Bm%7D%7Bs%7D)
La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (
), en metros, mediante la siguiente fórmula:
(2)
Donde
es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que
y
, entonces la longitud de onda de las ondas sonoras es:
![\lambda = \frac{1469,694\,\frac{m}{s} }{1000\,hz}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B1469%2C694%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%7D%7B1000%5C%2Chz%7D)
![\lambda = 1,470\,m](https://tex.z-dn.net/?f=%5Clambda%20%3D%201%2C470%5C%2Cm)
La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238
Answer:
Explanation:
Given
mass of Flywheel ![m_1=1440 kg](https://tex.z-dn.net/?f=m_1%3D1440%20kg)
mass of bus ![m_b=10200 kg](https://tex.z-dn.net/?f=m_b%3D10200%20kg)
radius of Flywheel ![r=0.63 m](https://tex.z-dn.net/?f=r%3D0.63%20m)
final speed of bus ![v=21 m/s](https://tex.z-dn.net/?f=v%3D21%20m%2Fs)
Conserving Energy i.e.
0.9(Rotational Energy of Flywheel)= change in Kinetic Energy of bus
Let
be the angular velocity of Flywheel
![0.9\cdot \frac{I\omega ^2}{2}=\frac{m_bv^2}{2}](https://tex.z-dn.net/?f=0.9%5Ccdot%20%5Cfrac%7BI%5Comega%20%5E2%7D%7B2%7D%3D%5Cfrac%7Bm_bv%5E2%7D%7B2%7D)
![I=moment\ of\ Inertia =mr^2=1440\cdot 0.63^2=571.536 kg-m^2](https://tex.z-dn.net/?f=I%3Dmoment%5C%20of%5C%20Inertia%20%3Dmr%5E2%3D1440%5Ccdot%200.63%5E2%3D571.536%20kg-m%5E2)
![0.9\cdot \frac{571.536\cdot \omega ^2}{2}=\frac{10200\cdot 21^2}{2}](https://tex.z-dn.net/?f=0.9%5Ccdot%20%5Cfrac%7B571.536%5Ccdot%20%5Comega%20%5E2%7D%7B2%7D%3D%5Cfrac%7B10200%5Ccdot%2021%5E2%7D%7B2%7D)
![\omega ^2=21^2\times \frac{10200}{0.9\times 571.536}](https://tex.z-dn.net/?f=%5Comega%20%5E2%3D21%5E2%5Ctimes%20%5Cfrac%7B10200%7D%7B0.9%5Ctimes%20571.536%7D)
![\omega =21\times 4.45=93.51 rad/s](https://tex.z-dn.net/?f=%5Comega%20%3D21%5Ctimes%204.45%3D93.51%20rad%2Fs)
The answer is Rh = 135 cm^3 and B = 0.05185 wh/m^2
Explanation:
Resitivity of silicon = 0.1
thickness = 100um
so, I = ma
Required to find out concentration of electron , we know that
Rh = up
By putting in the values,
Rh = 1350 x 0.1
Rh = 135 cm^3
Now consider,
Rh = 1 / Rh.q
= 1 / Rh . q
= 1 / 135 x1.609 x10^-19
= 4.6037 x 10^16 / cm^3
Vh = BIRh / w
B = Vh w/ IRh
B = -70 x10^-6 x 100 x10^-6 / 1x 10^-3 x 135 x 10^-6
B = 0.05185 wh / m^2