It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. The type of machine that a wire cutter pliers is classified is a simple machine. When we say simple machine, this is the type of machine that is considered basic wherein you need to apply force for it to function. Hope this helps.
In order to determine the required force to stop the car, proceed as follow:
Calculate the deceleration of the car, by using the following formula:

where,
v: final speed = 0m/s (the car stops)
vo: initial speed = 36m/s
x: distance traveled = 980m
a: deceleration of the car= ?
Solve the equation above for a, replace the values of the other parameters and simplify:

Next, consider that the formula for the force is:

where,
m: mass of the car = 820 kg
a: deceleration of the car = 0.66m/s^2
Replace the previous values and simplify:

Hence, the required force to stop the car is 542.20N
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.