Answer:
-30° C
Explanation:
Data provided in the problem:
The formula for conversion as:
F = (9/5)C + 32
Now,
for the values of F = -22 , C = ?
Substituting the value of F in the above formula, we get
-22 = (9/5)C + 32
or
-22 - 32 = (9/5)C
or
(9/5)C = - 54
or
C = - 54 × (5/9)
or
C = - 30 °
Hence, -22 Fahrenheit equals to -30°C
A child's IQ may increase with attention from a caregiver" is the one among the following that best describes the role of attention from a caregiver on the development of intelligence. The correct option among all the options that are given in the question is the first option. I hope the answer has helped you.
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1
Given,
the initial velocity = 0 m /s.
acceleration = 3.20 m / s^2
time = 32.8 s
According to laws of motion.
s = ut + 1/2 at ^2
s = 1/2 at²
s=1/2(3.20)(32.8)²
s= 1721.344 m
the distance traveled before takeoff is 1731.3m
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1