Answer:
The remaining light bulbs will go out.
Explanation:
The light bulb that was taken out routed power to the other light bulbs, there for, not giving power to the next light bulbs will make them turn off or, "go out". This may be incorrect, as you did not provide a picture of the circuit.
Answer:
yes ( true)
Explanation:
positive effects on all the body systems.
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
<em>For this case we have that by definition, the social sciences group all the scientific disciplines whose object of study is linked to the activities and behavior of human beings. The social sciences, therefore, analyze the manifestations of society, both material and symbolic.</em>
The surrounding natural environment is an environment that is mostly social. Therefore, using, using the mentioned definition, we need to consulate a social scientist.
This person can give information about the behavior of humans in social areas.
Then, Janet can get help from a social scientist.
Answer:
Option A
Answer:
Explanation:
We shall apply law of conservation of momentum to know velocity after collision . Let it be v .
total momentum before collision = total momentum after collision
15 x 1.5 - 12 x .75 = ( 15 + 12 ) v
v = .5 m /s
kinetic energy before collision
1/2 x 15 x 1.5² + 1/2 x 12 x .75²
= 16.875 + 3.375
= 20.25 J
kinetic energy after collision
= 1/2 x ( 15 + 12 ) x .5²
= 3.375 J
Loss of energy = 16.875 J
This energy appear as heat and sound energy that is produced during collision .