If F = Gm₁m₂/d², and we change m₁ to 5m₁ and m₂ to 2m₂, then the new magnitude of the gravitational force is
F' = G (5m₁) (2m₂) / d²
F' = 10 Gm₁m₂ / d²
but this is really just F' = 10F. So J is the correct choice.
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

Answer:
a=4,32m/s^2
Explanation:
Fnet = F1 - F2
= 12-1.2
= 10.8N
m=2.5kg
Fnet =ma
10.8=2.5a then divide both sides by 2.5 to get acceleration
Answer:
Koala, leopard, lion, cat, dog. Koala is an herbivore, leopard is a predator, lion is a predator, cat is a obligate carnivore, dogs are omnivores.
Explanation: